Answer: 
Explanation:
Molecular formula is the chemical formula which depicts the actual number of atoms of each element present in the compound.
Empirical formula is the simplest chemical formula which depicts the whole number of atoms of each element present in the compound.
The empirical formula is 
The empirical weight of
= 1(12)+1(1)+1(16)= 29 g.
The molecular weight = 60 g/mole
Now we have to calculate the molecular formula:

The molecular formula will be=
Thus molecular formula will be 
The attraction mediated flow of water in the narrow tube has been termed as Capillary action. Thus, option A is correct.
The process of flowing up of liquid with the attraction force between the molecules and the surface has been achieved with the surface characteristics.
<h3>Movement of water in a narrow tube</h3>
The surface has the force of attraction with the flowing liquids in the sample. It results in the increased surface interaction, and the liquid flows up in the tube against gravity.
The movement of the liquid in the water through a narrow tube has been termed as capillary action. Thus, option A is correct.
Learn more about movement of water, here:
brainly.com/question/1295312
Answer:
NADH is formed
Explanation:
If oxygen exists in the system, pyruvate goes into mitochondrial matrix in order to perform kreb's cycle and forms NADH
Otherwise, pyruvate forms into lactate acid.
Good luck on your final exam
This is what a chromosome looks like during mataphase
Answer:
Theoretical yield of C6H10 = 3.2 g.
Explanation:
Defining Theoretical yield as the quantity of product obtained from the complete conversion of the limiting reactant in a chemical reaction. It can be expressed as grams or moles.
Equation of the reaction
C6H11OH --> C6H10 + H2O
Moles of C6H11OH:
Molar mass of C6H110H = (12*6) + (1*12) + 16
= 100 g/mol
Mass of C6H10 = 3.8 g
number of moles = mass/molar mass
=3.8/100
= 0.038 mol.
Using stoichoimetry, 1 moles of C6H110H was dehydrated to form 1 mole of C6H10 and 1 mole of water.
Therefore, 0.038 moles of C6H10 was produced.
Mass of C6H10 = molar mass * number of moles
Molar mass of C6H10 = (12*6) + (1*10)
= 82 g/mol.
Mass = 82 * 0.038
= 3.116 g of C6H10.
Theoretical yield of C6H10 = 3.2 g