1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
agasfer [191]
3 years ago
6

A 54-kg jogger is running at a rate of 3 m/s. What is the kinetic energy of the jogger? A. 18 J B. 81 J C. 162 J D. 243 J

Mathematics
2 answers:
Mrrafil [7]3 years ago
5 0

Answer:

The answer would be be D.243 j

Step-by-step explanation:

Wewaii [24]3 years ago
4 0

   

\displaystyle\bf\\\text{\bf kinetic energy}=\frac{mv^2}{2}=\frac{54\times3^2}{2}=27\times9=\boxed{\bf243~J} \\\\\text{\bf Correct answer: D.}



You might be interested in
-8m+(-15)+4m-2r-10 ?
AVprozaik [17]

Answer:

- 4m - 2r - 25

Step-by-step explanation:

-8m + (-15) + 4m - 2r - 10

- 8m - 15 + 4m - 2r - 10

collect the like terms beginning with the positives

4m - 8m - 2r - 10 - 15

- 4m - 2r - 25

7 0
2 years ago
One positive integer is 5 times another positive integer and their product is 320. What are the positive integers?​
seropon [69]

Answer:

The integers are (x, y) = (40, 8).

Step-by-step explanation:

x = 5y

xy = 320

Substitute the first equation into the second equation.

(5y)(y) = 320

5y^2 = 320

y^2 = 64

y = 8 (y must be positive)

The integers are (x, y) = (40, 8).

6 0
2 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
2 years ago
A local kids play sold 8 adult tickets and 9 child tickets for a total of $205. On day two they sold only 4 adult tickets and 3
Naya [18.7K]

Answer:

The price of 1 adult ticket is $ 11 and price of 1 child ticket is $13

Step-by-step explanation:

Let x be the cost of 1 adult ticket

Let y be the cost of 1 child ticket

Cost of 8 adult tickets = 8x

Cost of 9 child tickets = 9y

We are given that A local kids play sold 8 adult tickets and 9 child tickets for a total of $205

So, 8x+9y=205 ----- 1

Cost of 4 adult tickets = 4x

Cost of 3 child tickets = 3y

We are given that 4 adult tickets and 3 child tickets for a total of $83.

4x+3y=83 ----2

Plot 1 and 2 on graph

8x+9y=205  -- Red line

4x+3y=83  -- Blue line

Intersection point provides the solution

So, Intersection point =(11,13)

So, The price of 1 adult ticket is $ 11 and price of 1 child ticket is $13

4 0
3 years ago
How do i find the missing measurement?
lisabon 2012 [21]
What do u mean by missing measurement?
7 0
3 years ago
Other questions:
  • Be specific and try!
    12·1 answer
  • Which coefficient matrix represents a system of linear equations that has a unique solution?
    15·2 answers
  • What is the length of side BC of the triangle?
    12·1 answer
  • Please look at the picture. Choices: A: 6 B: 10 C: 12 D: 14
    10·1 answer
  • What numbers round up and down to 600
    6·2 answers
  • The Nile River is 6,690 kilometers long. This is 1,160 kilometers longer than the Yangtze River. How long is the Yangzte River?
    12·1 answer
  • Which property of addition is used in the following (5+12)+6=5+(12+6)
    14·1 answer
  • Which table represents a linear function?
    6·2 answers
  • Derek scored a 15/25 on his math test and Meredith scored a 8/14 on her science test. Who had the best score? Explain.
    11·2 answers
  • If g(x) = 1 - ¾ x <br> find: -5g(4) - 1
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!