C. The design would not be cost-efficient; the plane would require more fuel due to increased thrust from higher drag.
Answer:
here is your answer please mark me as brainlist
Explanation:
Answer # Stamen: The pollen producing part of a flower, usually with a slender filament supporting the anther. Anther: The part of the stamen where pollen is produced. Pistil: The ovule producing part of a flower. The ovary often supports a long style, topped by a stigma.
Answer:
50000ppm and 0.855M.
Explanation:
ppm is an unit of chemistry defined as the ratio between mg of solute (NaCl) and Liters of solution. Molarity, M, is the ratio between moles of NaCl and liters
A 5% (w/v) NaCl contains 5g of NaCl in 100mL of solution.
To solve the ppm of this solution we need to find the mg of NaCl and the L of solution:
<em>mg NaCl:</em>
5g * (1000mg / 1g) = 5000mg
<em>L Solution:</em>
100mL * (1L / 1000mL) = 0.100L
ppm:
5000mg / 0.100L = 50000ppm
To find molarity we need to obtain the moles of NaCl in 5g using its molar mass:
5g * (1mol / 58.5g) = 0.0855moles NaCl
Molarity:
0.0855mol NaCl / 0.100L = 0.855M
Answer:
shorter wavelength = alpha wave
Explanation:
Given that,
The alpha wave has a frequency of 5 Hz and the beta wave has a frequency of 2 Hz.
We need to compare the wavelengths of these two waves.
For alpha wave,

For beta wave,

From the above calculations, we find that the wavelength of the alpha wave is shorter than the wavelength of the beta wave.
Answer:
0.0308 mol
Explanation:
In order to convert from grams of any given substance to moles, we need to use its molar mass:
- Molar mass of KAI(SO₂)₂ = MM of K + MM of Al + (MM of S + 2*MM of O)*2
- Molar mass of KAI(SO₂)₂ = 194 g/mol
Now we <u>calculate the number of moles of KAI(SO₂)₂ contained in 5.98 g</u>:
- 5.98 g ÷ 194 g/mol = 0.0308 mol