Answer:
The pressure the gas will have if the pressure is initially 1.50 atm at 22.0 ° C and the temperature changes at 11.0 ° C is 1.44 atm (option D)
Explanation:
Gay Lussac's law indicates that, as long as the volume of the container containing the gas is constant, as the temperature increases, the gas molecules move more rapidly. Then the number of collisions against the walls increases, that is, the pressure increases. That is, the gas pressure is directly proportional to its temperature.
Gay-Lussac's law can be expressed mathematically as follows:

Where P = pressure, T = temperature, K = Constant
You have a gas that is at a pressure P1 and at a temperature T1. When the temperature varies to a new T2 value, then the pressure will change to P2, and then:

In this case:
- P1= 1.50 atm
- T1= 22 °C= 295 °K (being 0°C= 273 °K)
- P2= ?
- T2= 11 °C= 284 K
Replacing:

Solving:

P2=1.44 atm
<u><em>The pressure the gas will have if the pressure is initially 1.50 atm at 22.0 ° C and the temperature changes at 11.0 ° C is 1.44 atm (option D)</em></u>
Answer:
Models help scientists understand processes in the natural world by providing simpler representations of those processes.
Answer:
40 electrons
Explanation:
The element of zirconium (Zr) has an atomic number of 40, which means it has 40 protons and 40 electrons. It also has a molar mass of 91.224 g/mol.
Answer:
Intramolecular forces are the forces that hold atoms together within a molecule. Intermolecular forces are forces that exist between molecules.
Explanation: