Answer:
-7.89 * 10^(-9) C
Explanation:
Parameters given:
q1 = 2.42 nC = 2.42 * 10^(-9) C
Distance between q1 and q2 = 5.33 m
q3 = 1.0 nC = 1 * 10^(-9) C
Distance between q1 and q3 = 1.9 m
Distance between q2 and q3 = 5.33 - 1.9 = 3.43 m
The net force acting on q3 is:
F = F(q1, q3) + F(q2, q3)
F = (k*q1*q3)/1.9² + (k*q2*q3)/3.43²
F = (9 * 10^(9) * 2.42 * 10^(-9) * 1 * 10^(-9))/3.61 + (9 * 10^(9) * q2 * 1 * 10^(-9))/11.7649
F = 6.033 * 10^(-9) + 0.765*q2
If the net force is zero:
0 = 6.033 * 10^(-9) + 0.765*q2
-0.765*q2 = 6.033 * 10^(-9)
=> q2 = -[6.033 * 10^(-9)]/0.765
q2 = -7.89 * 10^(-9) C
Answer:
The 80 mph car
Because the formula says 1/2 mass but for the velocity it is squared
Answer:
E = 2k 
Explanation:
Gauss's law states that the electric flux equals the wax charge between the dielectric permeability.
We must define a Gaussian surface that takes advantage of the symmetry of the problem, let's use a cylinder with the faces perpendicular to the line of charge. Therefore the angle between the cylinder side area has the same direction of the electric field which is radial.
Ф = ∫ E . dA = E ∫ dA = q_{int} /ε₀
tells us that the linear charge density is
λ = q_ {int} /l
q_ {int} = l λ
we substitute
E A = l λ /ε₀
is area of cylinder is
A = 2π r l
we substitute
E =
E =
the amount
k = 1 / 4πε₀
E = 2k 
Liquid and solid water were not in the giant gas cloudr
Answer:
D.None of these
Explanation:
The derivation of acceleration formula:
Let us call the 5kg mass
and the 4kg mass
. If the tension in the string is
then for the mass 
(1).
<em>(the negative sign on the right side indicates that acceleration is downwards)</em>
And for the mass 
(2).
<em> (the acceleration is upwards, hence the positive sign)</em>
Solving for
in the 2nd equation we get:
,
and putting this into the 1st equation we get:


Back to the question:
Using the formula for the acceleration we find


which is the acceleration that none of the given choices offer. Also, the acceleration of the two blocks is the same, because if it weren't, the difference in the instantaneous velocities of the objects would cause the string to break. Therefore, these two reasons make us decide that none of the choices are correct.