Answer:
12N
Explanation:
given- mass, acelation
Fnet=ma= .16kg*75m/s2
Fnet=12 N only force no friction given.
Answer:
Input impedance of this transformer is 50 ohms.
Explanation:
Given that,
Number of turns in the primary coil, 
Number of turns in the secondary coil, 
Output impedance of the transformer, 
The number of turns and the impedance ratio in the step down transformer is given by :

So, the input impedance of this transformer is 50 ohms. Hence, this is the required solution.
The force applied to the second ball by the first ball is 6.734 × 10^-4 N.
<h3>What is impulse of force?</h3>
The impulse of force is defined as the sum of the average force and the duration it is applied.
If the mass of the item remains constant, the impulse of force equals the change in momentum of the object.
Given that: mass of a metal sphere: m = 0.026 kg.
Initial speed of the sphere: u = 3.7 m/s.
When the sphere stops completely, its change in momentum = mu - 0
= 0.026×3.7 N-s.
= 0.0962 N-s.
As the spheres are in contact for 0.007s before the second sphere is shot off down the track, the force applied to the second ball =
change in momentum of 1st ball × time of contact
= 0.0962 × 0.007 N
= 0.0006734 N
= 6.734 × 10^-4 N.
Hence, the force applied to the second ball is 6.734 × 10^-4 N.
Learn more about impulse force here:
brainly.com/question/29787329
#SPJ1
Answer: 9 m
Explanation:
Work is said to be done when an unbalanced force causes displacement of the body.
Force is the product of mass (m) and acceleration (a).
Work = Force × Displacement
⇒W = F.s = ma.s
It is given that mass of the dresser is, m = 250 kg
work done, W = 126 J
Force acting on the dresser, F = 14 N
we need to find displacement, s
⇒126 J = 14 N × s
⇒ s = 126 J/ 14 N = 9 m
Hence, Laurie is able to move the dresser to about 9 m.
Answer:
2 Amps
which agrees with the second option in the list of answers
Explanation:
Use Ohm's law:
V = R * I
which with the information given to us becomes:
12 = 6 * I
then solving for I we get:
I = 12 V / 6 Ω = 2 Amps