Answer:
Mass and velocity.
Explanation:
Kinetic energy <u>is the energy that an object has due to its movement</u>, mathematically it is represented as follows:

where
is the mass of the object, and
is its velocity at a given point in time.
So we can see that to find the kinetic energy just before the ball hits the gound, we need the quantities:
- mass of the ball
- velocity of the ball before it hits the ground
With the knowledge of these two quantities the kinetic energy of the ball before touching the gound can be determined.
I think this is correct, but I am not entirely certain.
Find the force constant of the spring:
F = - KX
(0 - 62.4) = -K(0.172m)
-362.791 = -K
362.791 N/m = K
Find the work done in stretching the spring:
W = (1/2)KX
W = (1/2)(362.791)(0.172m)
W = 31.2 J
Newton's 2nd law of motion:
Force = (mass) x (acceleration)
= (0.314 kg) x (164 m/s²)
= 51.5 newtons
(about 11.6 pounds).
Notice that the ball is only accelerating while it's in contact with the racket. The instant the ball loses contact with the racket, it stops accelerating, and sails off in a straight line at whatever speed it had when it left the strings.
~ I hope this helped, and I would appreciate Brainliest. ♡ ~ ( I request this to all the lengthy answers I give ! )
<h2>Answer::</h2>
A compass works by detecting and responding to the Earth's natural magnetic fields. The Earth has an iron core that is part liquid and part solid crystal, due to gravitational pressure. It is believed that movement in the liquid outer core is what produces the Earth's magnetic field.','.
<span>Jun 16, 2012 - Given a temperature of 300 Kelvin, what is the approximate temperature in degrees Celsius? –73°C 27°C 327°C 673°C.</span><span>
</span>