Answer:
Explanation:
according to third equation of motion
2as=vf²-vi²
vf²=2as+vi²
vf=√2as+vi²
vf=√2as+vi
vf=√2*2*4+3
vf=√16+3
vf=4+3=7
so final velocity is 7 m/s
Answer:
The power expended by the car during the acceleration is 116.38KW
Explanation:
Power is a term that defines the rate at which energy is expended whenever work is done.
Power can be given as Force X velocity.
Force can be found using the formula:
F = mass X acceleration.
In this case,
F = 1100kg X 4.6m/s2
F = 5060 N
The final velocity, v of the car can be obtained from this formula:
v = u+ at
U = initial velocity = 0 (since the car started from rest)
a = acceleration = 4.6m/s2
t = time = 5 seconds
v = 0 + 4.6 X 5 = 23 m/s
Therefore, the power expended is 5060N X 23m/s=116,380W
The power expended by the car during the acceleration is 116.38KW
Efficiency = 1000/2000 = 0.5 = 50%
Velocity is the vector,
made up of the scalar speed + direction of speed
b). Displacement is the vector,
made up of the scalar distance + direction of distance
<span>The formula for frequency is speed of light divided by wavelength. 650 nm represents the wavelength and 3x10^8 m/s is the speed of light. If you convert 650nm to meters you get 6.5x10^-7 m so you can divide using the formula above, giving you 4.6x10^14 1/s or Hz, the unit of frequency in Physics.</span>