Answer:
The average angular acceleration is 0.05 radians per square second.
Explanation:
Let suppose that Ferris wheel accelerates at constant rate, the angular acceleration as a function of change in angular position and the squared final and initial angular velocities can be clear from the following expression:
![\omega^{2} = \omega_{o}^{2} + 2 \cdot \alpha\cdot (\theta-\theta_{o})](https://tex.z-dn.net/?f=%5Comega%5E%7B2%7D%20%3D%20%5Comega_%7Bo%7D%5E%7B2%7D%20%2B%202%20%5Ccdot%20%5Calpha%5Ccdot%20%28%5Ctheta-%5Ctheta_%7Bo%7D%29)
Where:
,
- Initial and final angular velocities, measured in radians per second.
- Angular acceleration, measured in radians per square second.
,
- Initial and final angular position, measured in radians.
Then,
![\alpha = \frac{\omega^{2}-\omega_{o}^{2}}{2\cdot (\theta-\theta_{o})}](https://tex.z-dn.net/?f=%5Calpha%20%3D%20%5Cfrac%7B%5Comega%5E%7B2%7D-%5Comega_%7Bo%7D%5E%7B2%7D%7D%7B2%5Ccdot%20%28%5Ctheta-%5Ctheta_%7Bo%7D%29%7D)
Given that
,
and
, the angular acceleration is:
![\alpha = \frac{\left(0.70\,\frac{rad}{s} \right)^{2}-\left(0\,\frac{rad}{s} \right)^{2}}{2\cdot \left(4.9\,rad\right)}](https://tex.z-dn.net/?f=%5Calpha%20%3D%20%5Cfrac%7B%5Cleft%280.70%5C%2C%5Cfrac%7Brad%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D-%5Cleft%280%5C%2C%5Cfrac%7Brad%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D%7D%7B2%5Ccdot%20%5Cleft%284.9%5C%2Crad%5Cright%29%7D)
![\alpha = 0.05\,\frac{rad}{s^{2}}](https://tex.z-dn.net/?f=%5Calpha%20%3D%200.05%5C%2C%5Cfrac%7Brad%7D%7Bs%5E%7B2%7D%7D)
Now, the time needed to accelerate the Ferris wheel uniformly is described by this kinematic equation:
![\omega = \omega_{o} + \alpha \cdot t](https://tex.z-dn.net/?f=%5Comega%20%3D%20%5Comega_%7Bo%7D%20%2B%20%5Calpha%20%5Ccdot%20t)
Where
is the time measured in seconds.
The time is cleared and obtain after replacing every value:
![t = \frac{\omega-\omega_{o}}{\alpha}](https://tex.z-dn.net/?f=t%20%3D%20%5Cfrac%7B%5Comega-%5Comega_%7Bo%7D%7D%7B%5Calpha%7D)
If
,
and
, the required time is:
![t = \frac{0.70\,\frac{rad}{s} - 0\,\frac{rad}{s} }{0.05\,\frac{rad}{s^{2}} }](https://tex.z-dn.net/?f=t%20%3D%20%5Cfrac%7B0.70%5C%2C%5Cfrac%7Brad%7D%7Bs%7D%20-%200%5C%2C%5Cfrac%7Brad%7D%7Bs%7D%20%7D%7B0.05%5C%2C%5Cfrac%7Brad%7D%7Bs%5E%7B2%7D%7D%20%7D)
![t = 14\,s](https://tex.z-dn.net/?f=t%20%3D%2014%5C%2Cs)
Average angular acceleration is obtained by dividing the difference between final and initial angular velocities by the time found in the previous step. That is:
![\bar \alpha = \frac{\omega-\omega_{o}}{t}](https://tex.z-dn.net/?f=%5Cbar%20%5Calpha%20%3D%20%5Cfrac%7B%5Comega-%5Comega_%7Bo%7D%7D%7Bt%7D)
If
,
and
, the average angular acceleration is:
![\bar \alpha = \frac{0.70\,\frac{rad}{s} - 0\,\frac{rad}{s} }{14\,s}](https://tex.z-dn.net/?f=%5Cbar%20%5Calpha%20%3D%20%5Cfrac%7B0.70%5C%2C%5Cfrac%7Brad%7D%7Bs%7D%20-%200%5C%2C%5Cfrac%7Brad%7D%7Bs%7D%20%7D%7B14%5C%2Cs%7D)
![\bar \alpha = 0.05\,\frac{rad}{s^{2}}](https://tex.z-dn.net/?f=%5Cbar%20%5Calpha%20%3D%200.05%5C%2C%5Cfrac%7Brad%7D%7Bs%5E%7B2%7D%7D)
The average angular acceleration is 0.05 radians per square second.