Answer: because ν = velocity/λ where ν and λ are the frequency and wavelegth of the wave.
Explanation: In order to explain this problem we have to consider the relationship between frequency and wavelengths which are related by the velocity of the wave as follows ν*λ=v where ν and λ are the frequency and wavelegth of the wave. These parameters have an inverse proportionality.
Then, ν = velocity/λ
Answer:
The answer is choice A.
Explanation:
Assuming you are in a situation with a gravitational field. You can divide the motion of the bullet into two components. One horizontal and the other in the vertical.
The time taken for the athlete to finish the race is 20 s (Option A)
<h3>What is power? </h3>
Power is simply defined as the rate at which work is done. It can be expressed mathematically as
Power (P) = work (W) / time (t)
But
Work = weight × distance
Therefore,
Power = (weight × distance ) / time
<h3>How to determine the time </h3>
- Mass (m) = 55 Kg
- Acceleration due to gravity (g) = 9.8 m/s²
- Weight = mg = 55 × 9.8 = 539 N
- Power (P) = 5.4 KW = 5.4 × 1000 = 5400 W
- Distance (d) = 200 m
- Time (t) =?
Power = (weight × distance ) / time
5400 = (539 × 200) / t
5400 = 107800 / t
Cross multiply
5400 × t = 107800
Divide both side by 5400
t = 107800 / 5400
t = 20 s
Learn more about power:
brainly.com/question/5684937
#SPJ1
Answer:
no where is the main part of the question dude
Answer:
The reason is because both are exposed to a virtually infinite heat sink, due to the virtually infinite mass and of the surrounding environment, compared to the sizes of either the cup or the kettle such that the equilibrium temperature,
reached is the same for both the cup and the kettle as given by the relation;

Due to the large heat sink, T₂ - T₁ ≈ 0 such that the temperature of the kettle and that of the cup will both cool to the temperature of the environment
Explanation: