It is a bit like a video game because when you dumb it down, it's basically a small robotic thing that is controlled by a controller. In video games, you have an avatar being controlled inside a game using a gamepad, in surgery you have a little machine inside of a person's body being controlled using a computer.
thermal contact
When heat flows from one object or substance to another it is in contact with, the objects or substances are said to be in thermal contact. The state where objects in thermal contact with each other reach the same temperature, no heat flows between them.
Energy is distributed not just in translational KE, but also in rotation, vibration and also distributed in electronic energy levels (if input great enough, bond breaks).
All four forms of energy are quantised and the quanta ‘gap’ differences increases from trans. KE ==> electronic.
Entropy (S) and energy distribution: The energy is distributed amongst the energy levels in the particles to maximise their entropy.
Entropy is a measure of both the way the particles are arranged AND the ways the quanta of energy can be arranged.
We can apply ΔSθsys/surr/tot ideas to chemical changes to test feasibility of a reaction:
ΔSθtot = ΔSθsys + ΔSθsurr
ΔSθtot must be >=0 for a chemical change to be feasible.
For example: CaCO3(s) ==> CaO(s) + CO2(g)
ΔSθsys = ΣSθproducts – ΣSθreactants
ΔSθsys = SθCaO(s) + SθCO2(g) – SθCaCO3(s)
ΔSθsurr is –ΔHθ/T(K) and ΔH is very endothermic (very +ve),
Now ΔSθsys is approximately constant with temperature and at room temperature the ΔSθsurr term is too negative for ΔSθtot to be plus overall.
But, as the temperature is raised, the ΔSθsurr term becomes less negative and eventually at about 800oCΔSθtot becomes plus overall (and ΔGθ becomes negative), so the decomposition is now chemically, and 'commercially' feasible in a lime kiln.
CaCO3(s) ==> CaO(s) + CO2(g) ΔHθ = +179 kJ mol–1 (very endothermic)
This important industrial reaction for converting limestone (calcium carbonate) to lime (calcium oxide) has to be performed at high temperatures in a specially designed limekiln – which these days, basically consists of a huge rotating angled ceramic lined steel tube in which a mixture of limestone plus coal/coke/oil/gas? is fed in at one end and lime collected at the lower end. The mixture is ignited and excess air blasted through to burn the coal/coke and maintain a high operating temperature.
ΔSθsys = ΣSθproducts – ΣSθreactants
ΔSθsys = SθCaO(s) + SθCO2(g) – SθCaCO3(s) = (40.0) + (214.0) – (92.9) = +161.0 J mol–1 K–1
ΔSθsurr is –ΔHθ/T = –(179000/T)
ΔSθtot = ΔSθsys + ΔSθsurr
ΔSθtot = (+161) + (–179000/T) = 161 – 179000/T
If we then substitute various values of T (in Kelvin) you can calculate when the reaction becomes feasible.
For T = 298K (room temperature)
ΔSθtot = 161 – 179000/298 = –439.7 J mol–1 K–1, no good, negative entropy change
For T = 500K (fairly high temperature for an industrial process)
ΔSθtot = 161 – 179000/500 = –197.0, still no good
For T = 1200K (limekiln temperature)
ΔSθtot = 161 – 179000/1200 = +11.8 J mol–1 K–1, definitely feasible, overall positive entropy change
Now assuming ΔSθsys is approximately constant with temperature change and at room temperature the ΔSθsurr term is too negative for ΔSθtot to be plus overall. But, as the temperature is raised, the ΔSθsurr term becomes less negative and eventually at about 800–900oC ΔSθtot becomes plus overall, so the decomposition is now chemically, and 'commercially' feasible in a lime kiln.
You can approach the problem in another more efficient way by solving the total entropy expression for T at the point when the total entropy change is zero. At this point calcium carbonate, calcium oxide and carbon dioxide are at equilibrium.
ΔSθtot–equilib = 0 = 161 – 179000/T, 179000/T = 161, T = 179000/161 = 1112 K
This means that 1112 K is the minimum temperature to get an economic yield. Well at first sight anyway. In fact because the carbon dioxide is swept away in the flue gases so an equilibrium is never truly attained so limestone continues to decompose even at lower temperatures.
Answer:
0.581 L or 581 mL
Explanation:
As stated in the question, the combined gas law is (P1*V1/T1) = (P2*V2/T2)
Write down the amounts you are given.
V1 = 0.152 L (I was taught to always convert milliliters to liters)
P1 = 717 mmHg
T1 = 315 K
V2 = ?
P2 = 463 mmHg
T2 = 777 K
The variable that is being solved for is final volume. Fill in the combined gas law equation with the corresponding amounts and solve for V2.
(717 mmHg*0.152 L) / (315 K) = (463 mmHg*V2) / (777 K)
0.346 = (463*V2) / (777)
0.346*777 = (463*V2) / (777)*777
268.842 = 463*V2
268.842/463 = (463*V2)/463
V2 = 0.581
Pressure and volume are indirectly proportional. This checks out because the volume increased while pressure decreased. Volume and temperature are directly proportional. This checks out because both volume and temperature increased. This is a good way to check your answers. You can also solve each side of the combined gas law equation to see if they are both the same.
Compounds formed from non-metals consist of molecules. The atoms in a molecule are joined together by covalent bonds. These bonds form when atoms share pairs of electrons.