Answer:
2 FeCl3 → 2 Fe + 3 Cl2
Explanation:
2 Fe and 6 Cl on the reactants side, and 2 Fe and 6 Cl on the products side.
The volume in liters of 576 grams of SO2 gas at STP is calculated as below
calculate the moles of SO2 = mass/molar mass
= 576 g/64 g /mol = 9 moles
At STP 1mole =22.4 L
what 9 mole =? liters
by cross multiplication
= 22.4 L x 9 moles/ 1moles = 201.6 liters
Answer:
Pp O2 = 82.944 KPa
Explanation:
heliox tank:
∴ %wt He = 32%
∴ %wt O2 = 68%
∴ Pt = 395 KPa
⇒ Pp O2 = ?
assuming a mix of ideal gases at the temperature and volumen of the mix:
∴ Pi = RTni/V
∴ Pt = RTnt/V
⇒ Pi/Pt = ni/nt = Xi
⇒ Pi = (Xi)*(Pt)
∴ Xi: molar fraction (ni/nt)
⇒ 0.68 = mass O2/mass mix
assuming mass mix = 100 g
⇒ mass O2 = 68 g
∴ molar mass O2 = 32 g/mol
⇒ moles O2 = (68 g)(mol/32 g) = 2.125 mol O2
⇒ mass He = 32 g
∴ molar mass He = 4.0026 g/mol
⇒ moles He = (32 g)(mol/4.0026 g) = 7.995 mol He
⇒ nt = nO2 + nHe = 2.125 mol + 7.995 mol = 10.12 moles
molar fraction O2:
⇒ X O2 = nO2/nt = (2.125 mol/10.12 mol) = 0.2099
⇒ Pp O2 = (X O2)(Pt)
⇒ Pp O2 = (0.2099)(395 KPa)
⇒ Pp O2 = 82.944 KPa
The greater the energy, the larger the frequency and the shorter (smaller) the wavelength. Given the relationship between wavelength and frequency — the higher the frequency, the shorter the wavelength — it follows that short wavelengths are more energetic<span> than long wavelengths.</span>