Answer:
the angular acceleration of the car is 1.5 rad/s²
Explanation:
Given;
initial angular velocity,
= 10 rad/s
final angular velocity,
= 25 rad/s
time of motion, t = 10 s
The angular acceleration of the car is calculated as follows;

Therefore, the angular acceleration of the car is 1.5 rad/s²
The first law of thermodynamics can be written as

where

is the variation of internal energy of the system

is the amount of heat absorbed by the system

is the work done by the system on the surrounding.
Using this form, the sign convention for Q and W becomes:
Q > 0 --> heat absorbed by the system (because it increases the internal energy)
Q < 0 --> heat released by the system (because it decreases the internal energy)
W > 0 --> work done by the system (for instance, an expansion: when the system expands, it does work on the surrounding, and so the internal energy decreases, this is why there is a negative sign in the formula Q-W)
W < 0 --> work done by the surrounding on the system (for instance, a compression: when the system is compressed, the surrounding is doing work on the system, and so the internal energy of the system increases)
Answer:
n = 5 approx
Explanation:
If v be the velocity before the contact with the ground and v₁ be the velocity of bouncing back
= e ( coefficient of restitution ) = 
and

h₁ is height up-to which the ball bounces back after first bounce.
From the two equations we can write that


So on

= .00396
Taking log on both sides
- n / 2 = log .00396
n / 2 = 2.4
n = 5 approx
Answer:
the speed after 3 seconds is 10 m/s
Explanation:
The computation of the speed is shown below:
As we know that
V = U + at
Here,
U = 34 m/s
a = - 8 m/s²
t = 3 Sec
V = velocity after 3 sec
V = 34 + (-8)3
= 34 - 24
V = 10 m/s
Hence, the speed after 3 seconds is 10 m/s
Answer:
η = 58.8%
Explanation:
Work is defined as the force applied by the distance traveled by the body.

where:
W = work [J] (units of joules)
F = force = 294 [N]
d = distance = 5 [m]
![W = 294*5\\W = 1470 [J]\\](https://tex.z-dn.net/?f=W%20%3D%20294%2A5%5C%5CW%20%3D%201470%20%5BJ%5D%5C%5C)
Efficiency is defined as the energy required to perform an activity in relation to the energy actually added to perform some activity. This can be better understood by means of the following equation.
