<span>Suppose you plant a seed and observe that a tree of large mass grows from it. The tree achieves a final mass that changes very little for years afterward.<span>
</span>Answer: Of the options presented above the one that is true about the tree is answer choice B) Both anabolic and catabolic reactions took place in the seed and tree when it was young and growing, and both continue now even though the tree reached a stable mass.
I hope it helps, Regards.</span>
Answer: final temperatures will be
a) water 21 C
b) concrete 20.005 C
c) steel 20.008 C
d) mercury 53 C
Explanation:
Change in temp dT = dH / (mass x specific heat)
Specific heat of these materials can be found from many sources:
water = 1 kcal / kg C
concrete = 210 kcal / kg C
steel = 114 kcal / kg C
mercury = 0.03 kcal /kg C
So dT (water) from 1 kcal heat into 1 kg water = 1 kcal / (1 kg x 1 kcal/kg C) = 1 C therefore the final temperature is 20 + 1 = 21 C
But dT (steel) = 1 kcal / (1kg x 114 kcal/kg C) = 0.008 C so the final temperature is 20 + 0.008 = 20.008 C
The results for concrete and mercury are calculated in the same way
Answer:
The light bends
Explanation:
When it passes through two different densities it changes directions, causing a bend
Explanation:
a)phenotype= 100% big
b) genotype=1:2:1 (FF-25%, Ff-50%, ff-25%)
phenotype=3:1 (big=75%, small= 25%)
Answer:
626.7nm
Explanation:
The energy of a photon is defined as:
E = hc / λ
<em>Where E is the energy of the photon, h is Planck constant (6.626x10⁻³⁴Js), c is speed of light (3x10⁸m/s) and </em>λ is the wavelength of light
The energy of 1 photon is:
(191000 J / mol) ₓ (1 mole / 6.022x10²³) = 3.1717x10⁻¹⁹ J
Replacing:
3.1717x10⁻¹⁹ J = <em>6.626x10⁻³⁴Jsₓ3x10⁸m/s / </em>λ
λ = 6.267x10⁻⁷m
as 1nm = 1x10⁻⁹m:
6.267x10⁻⁷m ₓ (1nm / 1x10⁻⁹m) =
<h3>626.7nm</h3>