Answer:
Hydrogen: -141 kJ/g
Methane: -55kJ/g
The energy released per gram of hydrogen in its combustion is higher than the energy released per gram of methane in its combustion.
Explanation:
According to the law of conservation of the energy, the sum of the heat released by the combustion and the heat absorbed by the bomb calorimeter is zero.
Qc + Qb = 0
Qc = -Qb [1]
We can calculate the heat absorbed by the bomb calorimeter using the following expression.
Q = C . ΔT
where,
C is the heat capacity
ΔT is the change in the temperature
<h3>Hydrogen</h3>
Qc = -Qb = -C . ΔT = -(11.3 kJ/°C) . (14.3°C) = -162 kJ
The heat released per gram of hydrogen is:

<h3>Methane</h3>
Qc = -Qb = -C . ΔT = -(11.3 kJ/°C) . (7.3°C) = -82 kJ
The heat released per gram of methane is:

Answer:
The reaction states that 2 moles of ethane react with 7 moles of oxygen. At standard temperature and pressure conditions (STP), each mole of gas occupies a volume of 22.4 liters. Therefore, 2 moles of ethane occupy liters, and 7 moles of oxygen occupy liters. In other words: 6 liters.
Explanation:
I hope it helps you
First, in order to calculate the specific heat capacity of the metal in help in identifying it, we must find the heat absorbed by the calorimeter using:
Energy = mass * specific heat capacity * change in temperature
Q = 250 * 1.035 * (11.08 - 10)
Q = 279.45 cal/g
Next, we use the same formula for the metal as the heat absorbed by the calorimeter is equal to the heal released by the metal.
-279.45 = 50 * c * (11.08 - 45) [minus sign added as energy released]
c = 0.165
The specific heat capacity of the metal is 0.165 cal/gC