Answer:
I think it is <em><u>Rooting</u></em><em> </em><u><em>Reflex</em></u>
the electric force decreases because the distance has an indirect relationship to the force
Explanation:
The electric force between two objects is given by

where
k is the Coulomb's constant
q1 and q2 are the charges of the two objects
r is the distance between the two objects
As we can see from the formula, the magnitude of the force is inversely proportional to the square of the distance: so, when the distance between the object increases, the magnitude of the force decreases.
Answer:
The answer is "
"
Explanation:
For point a:
Energy balance equation:


From the above equation:

because the rate of air entering the tank that is
constant.
Since the tank was initially empty and the inlet is constant hence,
Interpolate the enthalpy between
. The surrounding air
temperature:

Substituting the value from ideal gas:

Follow the ideal gas table.
The
and between temperature
Interpolate

Substitute values from the table.
For point b:
Consider the ideal gas equation. therefore, p is pressure, V is the volume, m is mass of gas.
(M is the molar mass of the gas that is
and R is gas constant), and T is the temperature.


For point c:
Entropy is given by the following formula:

Because of the rule of mask.
Answer:
The liquid phase will have the lowest temperature change upon heating.
Explanation:
Assuming no phase change due to heating, we know that the temperature change, is proportional to the mass heated, being the proportionality constant a quantity that depends on the material, and represents the resistance of the material to change the temperature, called specific heat.
So, if we assume that the mass is the same for the three phases, and that the amount of heat supplied is also the same,the phase with the highest specific heat will have the lowest temperature change.
So, the liquid phase will be the one that exhibits this behavior, as the specific heat of liquid water (4.184 J/gºC) is the highest among the three phases.