Answer:
The cannon has an initial speed of 13.25 m/s.
Explanation:
The launched cannonball is an example of a projectile. Thus, its launch speed can be determined by the application of the formula;
R = u
Where: R is the range of the projectile, u is its initial speed, H is the height of the cliff and g is the gravitaty.
R = 26.3 m, H = 19.3 m, g = 9.8 m/
.
So that:
26.3 = u
=
x 
691.69 =
x 
= 
= 
= 175.6104
⇒ u = 
= 13.2518
u = 13.25 m/s
The initial speed of the cannon is 13.25 m/s.
Answer: It will increase the length of the day
Explanation: The polar ice caps contain the solid ice particles found around the polar regions,an increased temperature is a major cause of the melting of the polar ice Caps. When the polar ice caps melt especially in huge volumes they increase the amount of water flowing into the Sea this will cause a rise in the volume of the sea.
This rise in sea level will add some weights to Earth, making the Earth to rotate slightly lower than its normal speed,a slower rotation will lead to longer days.
Answer:
the longest time needed to read an arbitrary sector located anywhere on the disk is 2971.24 ms
Explanation:
Given the data in the question;
first we determine the rotational latency
Rotational latency = 60/(3600×2) = 0.008333 s = 8.33 ms
To get the longest time, lets assume the sector will be found at the last track.
hence we will access all the track, meaning that 127 transitions will be done;
so the track changing time = 127 × 15 = 1905 ms
also, we will look for the sectors, for every track rotations that will be done;
128 × 8.33 = 1066.24 ms
∴The Total Time = 1066.24 ms + 1905 ms
Total Time = 2971.24 ms
Therefore, the longest time needed to read an arbitrary sector located anywhere on the disk is 2971.24 ms
Answer:
the ans i 1 ohm
Explanation:
if i cut a resistor of 9 ohm into 3 equal parts then each resistor will have a resistance of 3 ohm and if they are in parallel combination the net resistance will be R
so 1/R=1/R1+1/R2+1/R3
1/R=1/3+1/3+1/3
R=1
Answer:
16
Explanation:
If we treat the pot as a black body, then:
q = σ T⁴ A,
where q is the heat per second radiated,
σ is the Stefan-Boltzmann Constant,
T is the absolute temperature,
and A is the surface area.
If the absolute temperature doubles, then q increases by a factor of 2⁴ = 16.