Answer:
the balls would move closer to each other
Explanation:
The simplest way to do this is to set up equivalent fractions, like this-

=

Solve for x by using cross multiplication.
40*2.2= 88
1*x=88
x=88
Therefore, the boy weighs 88lbs.
Answer:
Explanation:
Let the velocity be v
Total energy at the bottom
= rotational + linear kinetic energy
= 1/2 Iω² + 1/2 mv² ( I moment of inertia of shell = mr² )
= 1/2 mr²ω² + 1/2 mv² ( v = ω r )
= 1/2 mv² +1/2 mv²
= mv²
mv² = mgh ( conservation of energy )
v² = gh
v = √gh
= √9.8 x 1.8
= 4.2 m /s
Answer:
Option 10. 169.118 J/KgºC
Explanation:
From the question given above, the following data were obtained:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1.61 KJ
Mass of metal bar = 476 g
Specific heat capacity (C) of metal bar =?
Next, we shall convert 1.61 KJ to joule (J). This can be obtained as follow:
1 kJ = 1000 J
Therefore,
1.61 KJ = 1.61 KJ × 1000 J / 1 kJ
1.61 KJ = 1610 J
Next, we shall convert 476 g to Kg. This can be obtained as follow:
1000 g = 1 Kg
Therefore,
476 g = 476 g × 1 Kg / 1000 g
476 g = 0.476 Kg
Finally, we shall determine the specific heat capacity of the metal bar. This can be obtained as follow:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1610 J
Mass of metal bar = 0.476 Kg
Specific heat capacity (C) of metal bar =?
Q = MCΔT
1610 = 0.476 × C × 20
1610 = 9.52 × C
Divide both side by 9.52
C = 1610 / 9.52
C = 169.118 J/KgºC
Thus, the specific heat capacity of the metal bar is 169.118 J/KgºC
Answer:
Explanation:
They traveled this distance in 2 parts, essentially. Part 1 had an average speed for a certain number of hours, part 2 had an average speed for a certain number of hours, and those 2 parts taken together took them a distance of 364 km. In equation form, that looks like this:
km/hr part 1 + km/hr part 2 = 364 km
Now we need to find each part on the left side of that equation. Part 1 first:
We traveled 65 km/hr for 2 hours, so that took us
and canceling out the hour label, we have that in part 1 we got
65(2) = 130 km. Good. Now onto the second part, where our unknown is.
We traveled 78 km/hr the second part for x hours, so that took us
and canceling out the hour label, we have that in part 2 we got
78x km. Now we can fill in the main equation (the one in bold print)
130 km + 78x km = 364 km and subtracting 130 km from both sides:
78x km = 234 km and dividing by 78 km:
x = 3 hours. Part 2 took 3 hours. Part 1 took 2 hours, so the whole trip took 5 hours.