Answer:
it maintains balance, it keeps body temperatures , heart rate and all other bodily functions regulated to keep the organism stable when the environment is not.
Answer:
<u>Given</u><u> </u><u>-</u>
- Initial Velocity, u = 114 m/s
- Final velocity, v = 77 m/s.
- Time taken, t = 9 sec.
<u>To</u><u> </u><u>find</u><u> </u><u>-</u><u> </u>
<u>Solu</u><u>tion</u><u> </u><u>-</u>
Here, using the equation of motion v = u + at we can find the acceleration easily.
★ Here,
- V = Final velocity
- U = Initial Velocity
- A = Acceleration
- T = Time.
<u>Subs</u><u>tituting</u><u> </u><u>the</u><u> </u><u>values</u><u> </u><u>-</u>
→ 77 = 114 + a(9)
→ 9a = 114 - 77
→ 9a = 37
→ a = 37/9
→ a = 4.1 m/s
<u>There</u><u>fore</u><u>,</u><u> </u><u>the</u><u> </u><u>accele</u><u>ration</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>car</u><u> </u><u>will</u><u> </u><u>be</u><u> </u><u>4</u><u>.</u><u>1</u><u> </u><u>m</u><u>/</u><u>s</u><u>.</u>
Among the choices above, the one
that is most closely related to an activated complex is the transition state. The
answer is letter D. This formation forms quickly and does not stay in a way
compound is. It usually forms during the enzyme – substrate reaction.
Answer:
0.25 gram of neptunium is remaining
Explanation:
First we calculate the no. of half lives passed. For that we have formula:
n = t/T
where,
n = no. of half lives passed = ?
t = total time passed = 8 days (From Monday noon to Tuesday noon of following week)
T = Half Life Period = 2 days
Therefore,
n = 8 days/2 days
n = 4
Now, for the remaining mass of neptunium, we use the formula:
m = (mi)/(2)^n
where,
mi = initial mass of neptunium = 4.00 grams
m = remaining mass of neptunium = ?
Therefore,
m = 4 grams/2⁴
<u>m = 0.25 gram</u>