Answer:
The speed decreases and the frequency remains the same.
Explanation:
Mark me as brainliest, please?
Kinetic energy<span> increases with the square of the velocity (KE=1/2*m*v^2). If the velocity is doubled, the KE quadruples. Therefore, the </span>stopping distance<span> should increase by a factor of four, assuming that the driver is </span>can<span> apply the brakes with sufficient precision to almost lock the brakes.</span>
Answer:
a)T total = 2*Voy/(g*sin( α ))
b)α = 0º , T total≅∞ (the particle, goes away horizontally indefinitely)
α = 90º, T total=2*Voy/g
Explanation:
Voy=Vo*sinα
- Time to reach the maximal height :
Kinematics equation: Vfy=Voy-at
a=g*sinα ; g is gravity
if Vfy=0 ⇒ t=T ; time to reach the maximal height
so:
0=Voy-g*sin( α )*T
T=Voy/(g*sin( α ))
- Time required to return to the starting point:
After the object reaches its maximum height, the object descends to the starting point, the time it descends is the same as the time it rises.
So T total= 2T = 2*Voy/(g*sin( α ))
The particle goes totally horizontal, goes away indefinitely
T total= 2*Voy/(g*sin( α )) ≅∞
T total=2*Voy/g
Had to look for the options and here is my answer. What happens when the fluid discharge of an air-operated reciprocating pump is shut, this will cause the pump to OVERSTROKE. Overstroke happens when the engine is switching in a normally-closed manner.