Answer:
The mass of G1 at all times during this trial was <u>0.5</u> kg.
The velocity of G1 + G2 after the collision was <u>-1.24</u> m/s.
The momentum of G1 after the collision was <u>-2.10</u> kg · m/s.
Explanation:
i got it right
Answer:
The acceleration is
and the distance covered is 97.17 m.
Explanation:
Given that,
Initial speed of an automobile, u = 60 km/hr = 16.67 m/s
Final speed of an automobile, v = 80 km/hr = 22.2 m/s
Time, t = 5 s
We need to find the acceleration of the car and the distance traveled in this 5 sec interval. Let a is the acceleration. Using the definition of acceleration as :

Let d is the distance covered. Using the third equation of motion to find it as follows :

So, the acceleration is
and the distance covered is 97.17 m.
Answer:
horizontal component of normal force is equal to the centripetal force on the car
Explanation:
As the car is moving with uniform speed in circle then the force required to move in the circle is towards the center of the circle
This force is due to friction force when car is moving in circle with uniform speed
Now it is given that car is moving on the ice surface such that the friction force is zero now
so here we can say that centripetal force is due to component of the normal force which is due to banked road
Now we have


so we have

so this is horizontal component of normal force is equal to the centripetal force on the car
This is called super-saturation
hope this helps :)))))))
You can download
the answer here
bit.
ly/3gVQKw3