Medicine to a patient. That should be calculated based on weight, strength/dosage and possibly other factors
Answer:
h=2.86m
Explanation:
In order to give a quick response to this exercise we will use the equations of conservation of kinetic and potential energy, the equation is given by,

There is no kinetic energy in the initial state, nor potential energy in the end,

In the final kinetic energy, the energy contributed by the Inertia must be considered, as well,

The inertia of the bodies is given by the equation,



On the other hand the angular velocity is given by

Replacing these values in the equation,

Solving for h,

Divide
(the distance covered in some period of time)
by
(the time taken to cover the distance).
The quotient is the average speed during that period of time.
Answer:
20 meters.
Explanation:
In the graph, the x-axis (the horizontal axis) represents the time, while the y-axis (the vertical axis) represents the distance.
If we want to find the distance covered in the first T seconds, you need to find the value T in the horizontal axis.
Once you find it, we draw a vertical line, in the point where this vertical line touches the graph, we now draw a horizontal line. This horizontal line will intersect the y-axis in a given value. That value is the total distance travelled by the time T.
In this case, we want to find the total distance that David ran in the first 4 seconds.
Then we need to find the value 4 seconds in the horizontal axis. Now we perform the above steps, and we will find that the correspondent y-value is 20.
This means that in the first 4 seconds, David ran a distance of 20 meters.