After 2 seconds the particle will be in position

After 5 seconds the particle will be in position

So, the particle will travel

meters in 3 seconds, for an average speed of

I think the answer is Allele am not so sure of it and sorry if my answer is wrong or didn’t help okay
Momentum = mass x velocity
Before collision
Momentum 1 = 2 kg x 20 m /s = 40 kg x m/s
Momentum 2 = 3 kg x -10m/s = -30 kg x m/s
After collision
Momentum 1 = 2 kg x -5 m/s = -10 m/s
Momentum 2 = 3 kg x V2 = 3V2
Total momentum before = total momentum after
40 + -30 = -10 + 3V2
V2 = <span>6.67 m/s
Total kinetic energy before
</span><span>= (1/2) [ 2 kg * 20 m/s * 2 + 3 kg * ( -10 m/s) *2 ]
= 550 J
</span>
<span>Total kinetic energy after
</span>= (1/2) [ 2 kg * ( - 5 m/s) * 2 + 3 kg * 6.67 m/s *2 ]
= 91.73 J
Total kinetic energy lost during collision
=<span>550 J - 91.73 J
= 458.27 J</span>
The file is blank!
*Explanation:* maybe add another?
Answer:


Explanation:
<u><em>Finding the net force:</em></u>
<u><em>Firstly , we'll find force of Friction:</em></u>

Where
is the coefficient of friction and m = 13.6 kg


<u><em>Now, Finding the net force:</em></u>


<u><em>Finding Acceleration:</em></u>


