1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SOVA2 [1]
3 years ago
6

6. A wave has a frequency of 600 Hz and is traveling at 300 m/s. What is its wavelength?

Physics
1 answer:
Luda [366]3 years ago
5 0

Answer:

0.5m

Explanation:

v=f×lamda

v is 300m/s, f is 600Hz, lamda is ?

lamda=v/f

lamda=300/600

lamda =3/6=1/2m

You might be interested in
The successive ionization energies for an unknown element are listed below. To which family in the periodic table does the unkno
bagirrra123 [75]
<span>The jump from 1966 to 16347 is the largest one or simply we can say it is hard to lose the 3rd electron.Whereas, it is relatively easy to lose the first two electrons.

So there will be only 2 electrons in the outer most shell.

According to the information mentioned above we can conclude the </span><span>unknown element likely belongs to the second group.
</span><span>I2 = 1752 kj/mol</span>
4 0
3 years ago
Read 2 more answers
Force F acts between a pair of charges, q1 and q2, separated by a distance d. For each of the statements, use the drop-down menu
lora16 [44]

The initial force between the two charges is given by:

F=k \frac{q_1 q_2}{d^2}

where k is the Coulomb's constant, q1 and q2 the two charges, d their separation. Let's analyze now the other situations:

1. F

In this case, q1 is halved, q2 is doubled, but the distance between the charges remains d.

So, we have:

q_1' = \frac{q_1}{2}\\q_2' = 2 q_2\\d' = d

So, the new force is:

F'=k \frac{q_1' q_2'}{d'^2}= k \frac{(\frac{q_1}{2})(2q_2)}{d^2}=k \frac{q_1 q_2}{d^2}=F

So the force has not changed.

2. F/4

In this case, q1 and q2 are unchanged. The distance between the charges is doubled to 2d.

So, we have:

q_1' = q_1\\q_2' = q_2\\d' = 2d

So, the new force is:

F'=k \frac{q_1' q_2'}{d'^2}= k \frac{q_1 q_2)}{(2d)^2}=\frac{1}{4} k \frac{q_1 q_2}{d^2}=\frac{F}{4}

So the force has decreased by a factor 4.

3. 6F

In this case, q1 is doubled and q2 is tripled. The distance between the charges remains d.

So, we have:

q_1' = 2 q_1\\q_2' = 3 q_2\\d' = d

So, the new force is:

F'=k \frac{q_1' q_2'}{d'^2}= k \frac{(2 q_1)(3 q_2)}{d^2}=6 k \frac{q_1 q_2}{d^2}=6F

So the force has increased by a factor 6.

8 0
3 years ago
Read 2 more answers
A fireworks rocket is fired vertically upward. At its maximum height of 90.0 m , it explodes and breaks into two pieces, one wit
Alex73 [517]

Answer:

Ai. Speed of the fragment with mass mA= 1.35 kg is 34.64 m/s

Aii. Speed of the fragment with mass mB = 0.270 kg is 77.46 m/s

B. 475.3 m

Explanation:

A. Determination of the speed of each fragment.

I. Determination of the speed of the fragment with mass mA = 1.35 kg

Mass of fragment (m₁) = 1.35 kg

Kinetic energy (KE) = 810 J

Velocity of fragment (u₁) =?

KE = ½m₁u₁²

810 = ½ × 1.35 × u₁²

810 = 0.675 × u₁²

Divide both side by 0.675

u₁² = 810 / 0.675

u₁² = 1200

Take the square root of both side.

u₁ = √1200

u₁ = 34.64 m/s

Therefore, the speed of the fragment with mass mA = 1.35 kg is 34.64 m/s

II. I. Determination of the speed of the fragment with mass mB = 0.270 kg

Mass of fragment (m₂) = 0.270 kg

Kinetic energy (KE) = 810 J

Velocity of fragment (u₂) =?

KE = ½m₂u₂²

810 = ½ × 0.270 × u₂²

810 = 0.135 × u₂²

Divide both side by 0.135

u₂² = 810 / 0.135

u₂² = 6000

Take the square root of both side.

u₂ = √6000

u₂ = 77.46 m/s

Therefore, the speed of the fragment with mass mB = 0.270 kg is 77.46 m/s

B. Determination of the distance between the points on the ground where they land.

We'll begin by calculating the time taken for the fragments to get to the ground. This can be obtained as follow:

Maximum height (h) = 90.0 m

Acceleration due to gravity (g) = 10 m/s²

Time (t) =?

h = ½gt²

90 = ½ × 10 × t²

90 = 5 × t²

Divide both side by 5

t² = 90/5

t² = 18

Take the square root of both side

t = √18

t = 4.24 s

Thus, it will take 4.24 s for each fragments to get to the ground.

Next, we shall determine the horizontal distance travelled by the fragment with mass mA = 1.35 kg. This is illustrated below:

Velocity of fragment (u₁) = 34.64 m/s

Time (t) = 4.24 s

Horizontal distance travelled by the fragment (s₁) =?

s₁ = u₁t

s₁ = 34.64 × 4.24

s₁ = 146.87 m

Next, we shall determine the horizontal distance travelled by the fragment with mass mB = 0.270 kg. This is illustrated below:

Velocity of fragment (u₂) = 77.46 m/s

Time (t) = 4.24 s

Horizontal distance travelled by the fragment (s₂) =?

s₂ = u₂t

s₂ = 77.46 × 4.24

s₂ = 328.43 m

Finally, we shall determine the distance between the points on the ground where they land.

Horizontal distance travelled by the 1st fragment (s₁) = 146.87 m

Horizontal distance travelled by the 2nd fragment (s₂) = 328.43 m

Distance apart (S) =?

S = s₁ + s₂

S = 146.87 + 328.43

S = 475.3 m

Therefore, the distance between the points on the ground where they land is 475.3 m

3 0
3 years ago
You're driving down the highway late one night at 21 m/s when a deer steps onto the road 35 m in front of you. Your reaction tim
andreev551 [17]

Speed with which initially car is moving is 21 m/s

Reaction time = 0.50 s

distance traveled in the reaction time d = v t

d = 21 * 0.50 = 10.5 m

deceleration after this time = -10 m/s^2

now the distance traveled by the car after applying bakes

v_f^2 - v_i^2 = 2a d

0 - 21^2 = 2(-10)d

d = 22.05 m

so total distance moved before it stop

d = 22.05 + 10.5 = 32.55 m

so the distance from deer is 35 - 32.55 = 2.45 m

now to find the maximum speed with we can move we will assume that we will just touch the deer when we stop

so our distance after brakes are applied is d = 35 - 10.5 = 24.5 m

again by kinematics

v_f^2 - v_i^2 = 2 ad

0 - v^2 = 2(-10)(24.5)

v = 22.1 m/s

so maximum speed would be 22.1 m/s

5 0
3 years ago
What are the uses of nuclear power ? ​
Alona [7]

Answer:

the main reason is electricity

Explanation:

there are many different things nuclear power does that are good and bad.

5 0
3 years ago
Other questions:
  • What holds the stars together in their galaxies? A. light B. orbits of the planets C. weight D. gravity
    9·2 answers
  • Accuracy is the correctness of a measurement. true or false.
    13·2 answers
  • If your kinetic energy is different from your work input (either greater or less) throuroughly explain what caused this discrepe
    8·1 answer
  • Which kind of pressure prevents stars of extremely large mass from forming?
    15·2 answers
  • An astronaut drops a hammer from 2.0 meters above the surface of the Moon. If the acceleration due to gravity on the Moon is 1.6
    11·1 answer
  • Simplify the expression [9+2(2-4)]/3
    10·1 answer
  • If a car has a linear acceleration of 1.8m/s^2 and the radius of its wheels is 0.33m, what is the angular acceleration of the wh
    6·2 answers
  • 6) Calculate the density of sulfuric acid if 35.4 mL of the acid weighs 65.14 g.
    5·2 answers
  • Note: the 2 in the answers are exponents
    15·1 answer
  • How do animal behaviors affect the probability of reproductive success?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!