Answer B. 112 m
Step-by-Step Explanation
initial velocity u = 20 m /s
final velocity v = 36 m /s
time taken t = 4 s
acceleration = (v - U) / t
= (36 - 20) / 4
a=4m/s2
from the formula
7-u2=2as , sis distance covered
putting the values
362-202=2×4×s
1296 - 400 = 8 x S
S= 112 m
Answer:
towards west
Explanation:
As we know that the speed of the blue car as appear to the bicycle rider is given as
towards west
also it is given that bicycle is moving at speed of 10 km/h towards East
so here we have

so we have

towards west
now speed of the red car is given as 15 km/h towards west
so here the relative speed of blue car with respect to red car is given as

towards west
Answer:
v_max = (1/6)e^-1 a
Explanation:
You have the following equation for the instantaneous speed of a particle:
(1)
To find the expression for the maximum speed in terms of the acceleration "a", you first derivative v(t) respect to time t:
(2)
where you have use the derivative of a product.
Next, you equal the expression (2) to zero in order to calculate t:
![a[(1)e^{-6t}-6te^{-6t}]=0\\\\1-6t=0\\\\t=\frac{1}{6}](https://tex.z-dn.net/?f=a%5B%281%29e%5E%7B-6t%7D-6te%5E%7B-6t%7D%5D%3D0%5C%5C%5C%5C1-6t%3D0%5C%5C%5C%5Ct%3D%5Cfrac%7B1%7D%7B6%7D)
For t = 1/6 you obtain the maximum speed.
Then, you replace that value of t in the expression (1):

hence, the maximum speed is v_max = ((1/6)e^-1)a
Answer:
216 m
Explanation:
Assuming a straight line:
Δx = vt
Δx = (12 m/s) (18 s)
Δx = 216 m
Answer:
The answer to your question is Ke = 72 J
Explanation:
Kinetic energy depends on the speed of and object and its mass.
Data
mass = m = 4 kg
speed = v = 6 m/s
distance = d = 8 m
Kinetic energy = ke = ?
Formula
Ke = (1/2) mv²
Substitution
Ke = (1/2) (4)(6)²
Simplification
Ke = (1/2)(4)(36)
Ke = (1/2)(144)
Ke = 72 Joules
Result
Ke = 72 J