1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Burka [1]
3 years ago
14

13. If you shorten the length of string by half that holds an object in rotation at the same tangential

Physics
1 answer:
Dmitrij [34]3 years ago
3 0

13. doubles

The tension in the string corresponds to the centripetal force that holds the object in rotation, so:

T=F=m\frac{v^2}{r}

where m is the mass of the object, v is the tangential speed, and r is the distance of the object from the centre of rotation (therefore it corresponds to the length of the string). The problem tells us that the tangential speed remains the same (v), while the length of the string is halved, so r'=r/2. Therefore, the new tension in the string will be

T'=m\frac{v^2}{r'}=m\frac{v^2}{r/2}=2m\frac{v^2}{r}=2T

so, the Tension doubles.

14. Variations of centripetal forces

Both revolution and rotation refer to the rotational motion of an object, therefore they both involve the presence of a centripetal force, which keeps the object in circular motion. The only difference between the two is:

- Revolution is the circular motion of an object around a point external to the object (for instance, the motion of the Earth around the Sun)

- Rotation is the circular motion of an object around its centre, so around a point internal to the object (for instance, the rotation of the Earth around its axis)

15. Rotational speed

For a uniform object in circular motion, all the points of the object have same rotational speed. In fact, the rotational speed is defined as

\omega=\frac{\Delta \theta}{\Delta t}

where \Delta \theta is the angular displacement covered in a time interval of \Delta t. Since all the points of the wheel are coeherent (they move together), they all cover the same angular displacement in the same time, so they all have same rotational speed.

16. away from the center of the path.

The tension in the string is responsible for keeping the tin can in circular motion. Therefore, the tension in the string represents the centripetal force, and so it is directed towards the centre of the path. According to Newton's third law, the tin can exerts a force on the string which is equal in magnitude (so, same magnitude of the tension), but opposite in direction: therefore, away from the centre of the path.

17. weight of the bob.

There are two forces acting on the bob in the vertical direction: the weight of the bob (downward) and the vertical component of the string tension (upward). Since there is no acceleration along the vertical direction, the net force must be zero, so these two forces must be equal: it means that the vertical component of the string tension is equal to the weight of the bob. Along the horizontal direction, instead, the horizontal component of the string tension corresponds to the centripetal force that keeps the bob in circular motion.

18. horizontal component of string tension.

Along the horizontal direction, there is only one force acting on the bob: the horizontal component of the string tension. Since the bob is moving of circular motion along the horizontal direction, this means that this force (the horizontal component of the string tension) must correspond to the centripetal force that keeps the pendulum in circular motion.

19. inward, toward the center of swing.

The force that the can exerts on the bug is the force that keeps the bug in circular motion (since it prevents the bug from moving away). Therefore, it must corresponds to the centripetal force.

20. speed of the car. AND radius of curvature.

The normal force exerted on a car executing a turn on a banked track is given by the expression:

N=\frac{mg}{cos \theta - \mu sin \theta}

where m is the mass of the car, g is the gravitational acceleration, \theta is the angle of the bank, and \mu is the coefficient of friction.

From the formula, we see that the normal force depends on \theta (the angle of the bank) and \mu (the coefficient of friction), while it does not depend on the speed of the car or on the radius of curvature. Therefore, these two are the correct answers.

You might be interested in
6. An object accelerates from rest to 70 m/s in 3.5 s. What is the acceleration of the object?
sweet-ann [11.9K]

Answer:

The acceleration of the object is 20 meters per second square = 20 m/s^2

Explanation:

Recall that acceleration is defined as the change in velocity divided the time it takes for the change. Therefore , if the object accelerates from rest (zero velocity) to 70 m/s , the change in velocity is (70 m/s - 0 m/s = 70 m/s)

which divided by the 3.5 seconds it took for the change, gives:

acceleration = (70 m/s  /  3.5 s ) = 20  m/s^2

4 0
3 years ago
1. A truck with a mass of 8, 000 kg is traveling at 26.8 m/s when it hits the brakes. A.)What is the momentum of the truck befor
NikAS [45]

Answer:

1. A.) The moment of the truck before it hits the brakes is 214,400 kg·m/s

B.) The force it takes to stop the truck is approximately 17,290.4 N

Explanation:

1. A.) The given parameters are;

The mass of the truck, m = 8,000 kg

The velocity of the truck when it hits the brakes, u = 26.8 m/s

Momentum = Mass × Velocity

The moment of the truck = The mass of the truck × The velocity of the truck

Therefore;

The moment of the truck before it hits the brakes = 8,000 kg × 26.8 m/s = 214,400 kg·m/s

B.) The amount of momentum lost when the truck comes to a stop = The initial momentum of the truck

The time it takes the truck to come to a complete stop, t = 12.4 s

The deceleration, "a" of the truck is given by the following kinematic equation of motion

v = u - a·t

Where;

v = The final velocity of the truck = 0 m/s

u = The initial velocity = 26.8 m/s

a = the deceleration of the truck

t = The time of deceleration of the truck = 12.4 s

Substituting the known values gives;

0 = 26.8 - a × 12.4

Therefore;

26.8 = a × 12.4

a = 26.8/12.4 ≈ 2.1613

The deceleration (negative acceleration) of the truck, a ≈ 2.1613 m/s²

Force = Mass × Acceleration

The force required to stop the truck = The mass pf the truck × The deceleration (negative acceleration) given to the truck

∴ The force it takes to stop the truck = 8,000 kg × 2.1613 m/s² ≈ 17,290.4 N.

8 0
3 years ago
What is the formula for conservation of momentum
olga55 [171]

Answer:

The general equation for conservation of momentum during a collision between n number of objects is given as: [m i ×v i a ] = [m i ×v i b ] Where m i is the mass of object i , v i a is the velocity of object i before the collision, and v i b is the velocity of object i after the collision.

Explanation:

6 0
3 years ago
Given a block of glass that is semi-circular, a laser pointer, protractor/ruler, and index card, design your own experiment to o
Charra [1.4K]

Answer:

we go up the ramp there is a point where the beam is reflected inside the block, we carefully step back to the point where the beam is horizontal, we measure this angle which is our critical angle.

Explanation:

To design the experiment of measuring the critical angle, we describe the phenomenon, when the light passes from a medium with a higher refractive index to one with a lower index, it separates from the normal one and the Critical Angle is defined as the Angle for which the refraction occurs at 90º

            n₂ sin θ₂ = n₁ sin 90

           n₁ / n₂ = sin θ₂

As we can see, we have to measure the angle with which the laser touches the exit surface of the glass block.

Design of the experiment:

    We place the glass block on the ramp and at the top we hit the conveyor for half the angle, we climb the block on the ramp and see that the angle of incidence of lightning on the exit face changes, part of the beam comes out of the glass , we see it by dispersion in the particles of dirty in the air; Maybe the conveyor or the laser should be moved slightly so that the beam touches the point of origin on the conveyor.

   

   When we go up the ramp there is a point where the beam is reflected inside the block, we carefully step back to the point where the beam is horizontal, we measure this angle which is our critical angle.

5 0
3 years ago
Read 2 more answers
Change the following data into scientific notation.<br><br> 5 000 000 km
RoseWind [281]
To find out scientific notation, you want to make sure that number is less than 10. So do 5.000000, you don't rally need the zeros but I just want to make my point. So use 10^x meaning ten the whatever power adds zeros like 5.000000x10^6 meaning it is increasing it by six zeros moving it out of the decimals and letting become 5,000,000. 
8 0
3 years ago
Other questions:
  • If you increase the resistance in a series circuit, ________________
    5·1 answer
  • A car whose mass is 1000kg is traveling at a constant speed of 10 m/s2. Neglecting any friction, how much force will the engine
    5·1 answer
  • 3. A train has broken through the wall of a train station. During the collision, what can be said about the force exerted by the
    15·1 answer
  • Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1050 kg and was approaching at
    15·1 answer
  • A vice pushes on a system of three boards, each oriented vertically and held up by horizontal forces. The outer boards weigh 90
    12·1 answer
  • An object has 22.4 kg•m/s of
    13·2 answers
  • If the astronaut in the video wanted to move upward, in which direction should he throw the object? Why?
    7·2 answers
  • At a playground a student runs at a speed of 5 m/s and jump onto a circular disk of radius 3/2 m that is free to rotate around a
    9·1 answer
  • The speed limit on Highway 85 is 65 mi/h. What is it in m/s?
    9·2 answers
  • 3. Work out the mass if an object is accelerated at <br> 10 m/s2 and has a weight of 98N.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!