Answer:
The potential difference between the ends of a wire is 60 volts.
Explanation:
It is given that,
Resistance, R = 5 ohms
Charge, q = 720 C
Time, t = 1 min = 60 s
We know that the charge flowing per unit charge is called current in the circuit. It is given by :
I = 12 A
Let V is the potential difference between the ends of a wire. It can be calculated using Ohm's law as :
V = IR
V = 60 Volts
So, the potential difference between the ends of a wire is 60 volts. Hence, this is the required solution.
Conserve natural resources, energy and landfill space.
Time stops everything is made out of atoms so if atoms freeze everything freezes
<h2>Answer: Kitty Hawk, North Carolina
</h2>
The Wright brothers, Wilbur and Orville, were pioneers of aviation, since they flew in a device heavier than air, which was inconceivable at that time.
Their first successful flight was on December 17th, 1903 in Kitty Hawk, North Carolina, which lasted only 12 seconds in which their plane (the Flyer I, with 341 kg, 6.4 m long and a wingspan of 12.3 m) traveled 37 m without touching the ground. This was achieved through the help of an external catapult that "threw" them into the air.
It should be noted that the Wright brothers only studied until high school, however, their passion for solving the problem of the human inability to fly, their perseverance and experience acquired over the years in their bicycle company, led them to reach that goal. An achievement that marked the beginning of the aviation era.
Answer:
Explanation:
Given:
Steam Mass rate, ms = 1.5 kg/min
= 1.5 kg/min × 1 min/60 sec
= 0.025 kg/s
Air Mass rate, ma = 100 kg/min
= 100 kg/min × 1 min/60 sec
= 1.67 kg/s
A.
Extracting the specific enthalpy and temperature values from property table of “Saturated water – Pressure table” which corresponds to temperature at 0.07 MPa.
xf, quality = 0.9.
Tsat = 89.9°C
hf = 376.57 kJ/kg
hfg = 2283.38 kJ/kg
Using the equation for specific enthalpy,
hi = hf + (hfg × xf)
= 376.57 + (2283.38 × 0.9)
= 2431.552 kJ/kg
The specific enthalpy of the outlet, h2 = hf
= 376.57 kJ/kg
B.
Rate of enthalpy (heat exchange), Q = mass rate, ms × change in specific enthalpy
= ms × (hi - h2)
= 0.025 × (2431.552 - 376.57)
= 0.025 × 2055.042
= 51.37455 kW
= 51.38 kW.