W = _|....F*dx*cos(a)........With F=force, x=distance over which force acts on object,
.......0.............................and a=angle between force and direction of travel.
Since the force is constant in this case we don't need the equation to be an integral expression, and since the force in question - the force of friction - is always precisely opposite the direction of travel (which makes (a) equal to 180 deg, and cos(a) equal to -1) the equation can be rewritted like so:
W = F*x*(-1) ............ or ............. W = -F*x
The force of friction is given by the equation: Ffriction = Fnormal*(coeff of friction)
Also, note that the total work is the sum of all 45 passes by the sandpaper. So our final equation, when Ffriction is substituted, is:
W = (-45)(Fnormal)(coeff of friction)(distance)
W = (-45)...(1.8N).........(0.92).........(0.15m)
W = ................-11.178 Joules
The centripetal acceleration a is 4.32
10^-4 m/s^2.
<u>Explanation:</u>
The speed is constant and computing the speed from the distance and time for one full lap.
Given, distance = 400 mm = 0.4 m, Time = 100 s.
Computing the v = 0.4 m / 100 s
v = 4
10^-3 m/s.
radius of the circular end r = 37 mm = 0.037 m.
centripetal acceleration a = v^2 / r
= (4
10^-3)^2 / 0.037
a = 4.32
10^-4 m/s^2.
Λ= V/f
<span>but change it to represent the speed of light, c </span>
<span>λ= c/f </span>
<span>c = 3.00 x 10^8 m/s </span>
<span>Plug in your given info and solve for λ(wavelength) </span>
<span>λ= 3.00 x 10^8 m/s / 7.5 x 10^14 Hz
(3.00 x 10^8) / (7.5 x 10^14) = 300,000,000 / 750,000,000,000,000 = 0.0000004
Hope this helps :)
</span>
Answer:
When does the radioactive decay of a radioisotope stop? Give one example. An unstable isotope continues the decay process until it reaches a stable form. One example is the decay of carbon-14 to nitrogen-14.
Explanation:
ionic compound. The atom that lost the electron becomes a cation, and the atom that gains an electron becomes an anion. The cation and anion bond together because they have opposite charges to form an ionic compound. The question may be looking for just cation or anion, though.