B- is the answer
Hope this helps
Have a nice day~
Answer:
C Region
Explanation:
C Region contains all the liquids as 0 °C is the freezing point of water (Crystals of water are formed leaving it no more in the liquid state) and 100 °C is the boiling point (The water boils leaving it no more in the liquid state).
Hence, All liquids are contained in the C region.
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3>
Answer: 0.5 g/cm^3
Density equals mass divided by volume so..
60/120 is 0.5 g/cm^3
Answer: Edge length of the unit cell = 628pm
Explanation: For a body centred cubic structured system, the relationship between the edge length of the unit cell and radius of the atoms in the structure is
Edge length of Unit cell (a) = (4R)/(√3)
R = 272pm = (272 × (10^-12))m = (2.72 × (10^-10))m
a = (4 × (2.72 × (10^-10)))/(√3)
a = (6.28157 × (10^-10))m = 628pm
Answer:
Explanation:
These instrument works on the analysis of the emisson spectral of light received from the star in this way.
Think of a steel knife in your kitchen. Initially, it has this shiny silver colour that typifies it. When the knife is placed on a hot plate, it becomes hotter and begins to go red as the heating continues. If we stop the heating and pour cold water on it, the red dissapears and our knife is back to itself, although the silvery shine would be lost. This is simply how the atomic absorption spectroscopy works. When you see the hot knife you can say a couple of things about it. Different metals have their various melting point. We can compare the temperature at which our knife will melt with a standard melting point scale to know the type of metal it is made of.
In atomic absorption spectroscopy, an atom gains energy and it becomes excited. Every atom is known to have a peculair amount of absorbant energy that cause them to excite. The more the particles in the atom, the more the energy required. When we analyse the absorbent energy of the atom, it differs from other atoms and we truly identify such an atom even if we don't know it. Most times, the energy is given off as light.