Answer:
0.184 atm
Explanation:
The ideal gas equation is:
PV = nRT
Where<em> P</em> is the pressure, <em>V</em> is the volume, <em>n</em> is the number of moles, <em>R</em> the constant of the gases, and <em>T</em> the temperature.
So, the sample of N₂O₃ will only have its temperature doubled, with the same volume and the same number of moles. Temperature and pressure are directly related, so if one increases the other also increases, then the pressure must double to 0.092 atm.
The decomposition occurs:
N₂O₃(g) ⇄ NO₂(g) + NO(g)
So, 1 mol of N₂O₃ will produce 2 moles of the products (1 of each), the <em>n </em>will double. The volume and the temperature are now constants, and the pressure is directly proportional to the number of moles, so the pressure will double to 0.184 atm.
Answer:
the question is incomplete
Answer:
D. Ni²⁺
Explanation:
We know at once that the answer cannot be A or C, because Ni and Cu are already in their lowest oxidation states.
The correct answer must be either B or D.
An electrolytic cell is the opposite of a galvanic cell. In the former, the reaction proceeds spontaneously. In the latter, you must force the reaction to occur.
One strategy to solve this problem is:
- Look up the standard reduction potentials for the half reaction·
- Figure out the spontaneous direction.
- Write the equation in the reverse direction.
1. Standard reduction potentials
E°/V
Cu²⁺ + 2e⁻ ⟶ Cu; 0.3419
Ni²⁺ + 2e⁻ ⟶ Ni; -0.257
2. Galvanic Cell
We reverse the direction of the more negative half cell and add.
<u>E°/V
</u>
Ni ⟶ Ni²⁺ + 2e⁻; 0.257
<u>Cu²⁺ + 2e⁻ ⟶ Cu; </u> 0.3419
Ni + Cu²⁺ ⟶ Cu + Ni²⁺; 0.599
This is the spontaneous direction.
Cu²⁺ is reduced to Cu.
3. Electrochemical cell
<u>E°/V</u>
Ni²⁺ + 2e⁻ ⟶ Ni; -0.257
<u>Cu ⟶ Cu²⁺ + 2e⁻; </u> <u>-0.3419</u>
Cu + Ni²⁺ ⟶ Ni + Cu²⁺; -0.599
This is the non-spontaneous direction.
Ni²⁺ is reduced to Ni in the electrolytic cell.
Answer:
It is considered life, but that doesn’t have to do much with abortion.
We kill things all the time. Unless you are vegetarian, lots of animals are killed to give you meat. Even if you are, you’ll probably swat a mosquito that’s trying to bite you. And what about the bacteria inside your body that are constantly killed to keep you healthy?
The question is how much this life is worth. This becomes more a question of ethics, but I think we can all agree a human life is worth a lot. So killing humans is wrong. What about somewhat intelligent animals? Well, killing them just for the fun of it or because you can is wrong as well I think.Most people think that’s okay, although some people will disagree and become vegetarians.
Insect life is worth less, and killing an insect is seen by most people as okay as long as you have even a small reason for it (like being irritated by a buzzing fly).
And all the way on the bottom are bacteria. They are not conscious, even though alive.
Sorry about the first answer. I didn't look at the question carefully since I wasn't wearing my glasses.
If this doesn't help than I'm sorry.
The percentage of the sulfur (S) in the compound CuSO₄ is 20.1 %.
<h3>What is the mass percentage?</h3>
The percentage of an element in a compound can be determined as the number of parts by mass of that element present in 100 parts by mass of the given compound.
First, calculate the molecular mass of the given compound by the addition of the atomic masses of all the present elements in the molecular formula. Then, the percentage of the elements can be determined by dividing the total mass of the element by the molar mass of the compound multiplied by 100.
Given, the atomic mass of copper, sulfur, and oxygen is 63.55 g, 32.07 g, and 16.0g respectively.
The molecular mass of CuSO₄ = 63.55 + 32.07 + 4(16.0) = 159.62 g
The mass percentage of the sulphur = (32.07/159.62) × 100 = 20.1 %
Therefore, the mass percentage of the sulfur is equal to 20.1 %.
Learn more about the mass percentage, here:
brainly.com/question/16750428
#SPJ1