Answer: the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m
Explanation:
Given that;
mass of vehicle m = 1000 kg
for a low speed test; V = 2.5 m/s
bumper maximum deflection = 4 cm = 0.04 m
First we determine the energy of the vehicle just prior to impact;
W_v = 1/2mv²
we substitute
W_v = 1/2 × 1000 × (2.5)²
W_v = 3125 J
now, the the effective design stiffness k will be:
at the impact point, energy of the vehicle converts to elastic potential energy of the bumper;
hence;
W_v = 1/2kx²
we substitute
3125 = 1/2 × k (0.04)²
3125 = 0.0008k
k = 3125 / 0.0008
k = 3906250 N/m
Therefore, the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m
Yea it’s called the Saffir-Simpson Hurricane scale, made in 1960s and further developed in 1970s
Answer:
Explanation:
By multiplying the rotational frequency with the circumference we can determine the average speed of the object. The circular velocity formula is expressed as, vc = 2 πr / T. Where in, r denotes the radius of the circular orbit. T is time period.
1. Magnetic properties of a substance depends on the structure of its valence electrons. It has something to do with orbitals so I suggest you study about molecular geometry of a compound/substance firstIt's the way a substance's atoms fit together, being pulled and pushed from all sides equally. exists in metallic bonds <span>if a substance is said to be magnetic, it is simply attracted by a magnet. if it is paramagnetic, it is repelled by a magnet.
2.</span>The magnetic field will be perpendicular to the electric field and vice versa<span>
An electric field is the area which surrounds an electric charge within which it is capable of exerting a perceptible force on another electric charge.
A magnetic field is the area of force surrounding a magnetic pole, or a current flowing through a conductor, in which there is a magnetic flux. A magnetic field can be produced when an electric current is passed through an electric circuit wound in a helix or solenoid.
The relationship that exists between an electric field and a magnetic field is one of electromagnetic interaction as a consequence of associating elementary particles.
The electrostatic force between charged particles is an example of this relationship.</span>