Answer:
The reaction will continue in the forward direction until all the NO or all the NO₂ is used up.
Explanation:
- <em>Le Châtelier's principle </em><em>states that when there is an dynamic equilibrium, and this equilibrium is disturbed by an external factor, the equilibrium will be shifted in the direction that can cancel the effect of the external factor to reattain the equilibrium.</em>
- So, according to Le Chatelier's principle, removing the product (N₂O₃) from the system means decreasing the concentration of the products; thus, the reaction will proceed forward to produce more product to minimize the stress of removing N₂O₃ from the system.
- <em>So, the reaction will continue in the forward direction until all the NO or all the NO₂ is used up.
</em>
<em></em>
We shall consider V, the volume and T, the temperature.
According to Boyle's Laws:

In our case:
Answer:
4
Explanation:
in order for the bobber to float,it must be less dense, and for the line to sink, it must be more dense.
The concept used here is the Law of Conservation of Mass. Technically, it's more specifically included in the Law of Definite Proportions. According to Dalton's atomic theory, when substances react together, they form a compound that has the same fixed ratio of the individual elements. That is the main reason why we balance, because stoichiometric coefficients are essential to obey the Law.
For the reaction a + b ⇒ ab, this is a combination reaction. For every 1 mole of a and 1 mole of b, 1 mole of product ab is formed. This is the fixed ratio we have to follow: 1:1:1. Now, the next thing to note is the limiting and excess reactant. If initially, there are 2 moles of A and 3 moles of B, the limiting reactant is A and the excess is B. Since the ratio between reactants is 1:1, 3 moles of B requires 3 moles of A. But since only 2 moles are available, reactant A is limited. In this problem, we assume that B is provided in excess. So, we just focus on the amount of the limiting reactant a.
If there are 5,000 molecules of a, we can determine the molecules of ab using the fixed ratio, 1 part a is to 1 part ab. Then, that means that 5,000 molecules of a would yield also 5,000 molecules of ab.