Answer:
0
Step-by-step explanation:
Simplifying
-7(x + -2) + 1 = 15 + -7x
Reorder the terms:
-7(-2 + x) + 1 = 15 + -7x
(-2 * -7 + x * -7) + 1 = 15 + -7x
(14 + -7x) + 1 = 15 + -7x
Reorder the terms:
14 + 1 + -7x = 15 + -7x
Combine like terms: 14 + 1 = 15
15 + -7x = 15 + -7x
Add '-15' to each side of the equation.
15 + -15 + -7x = 15 + -15 + -7x
Combine like terms: 15 + -15 = 0
0 + -7x = 15 + -15 + -7x
-7x = 15 + -15 + -7x
Combine like terms: 15 + -15 = 0
-7x = 0 + -7x
-7x = -7x
Add '7x' to each side of the equation.
-7x + 7x = -7x + 7x
Combine like terms: -7x + 7x = 0
0 = -7x + 7x
Combine like terms: -7x + 7x = 0
0 = 0
Solving
0 = 0
Couldn't find a variable to solve for.
This equation is an identity, all real numbers are solutions.
Answer: 4
Step-by-step explanation:
Hi, to answer this question, first, we have to subtract the amount of fabric used (3yd) to the total fabric that Demarco has (6yd)
6 -3 =3yd
Finally, we have to divide the result by the length of each strip piece (3/4yd)
3÷ 3/4= 4 pieces
There are 4 3/4 yd long strips.
Feel free to ask for more if needed or if you did not understand something.
<span>Dawn was at 6 am.
Variables
a = distance from a to passing point
b = distance from b to passing point
c = speed of hiker 1
d = speed of hiker 2
x = number of hours prior to noon when dawn is
The first hiker travels for x hours to cover distance a, and the 2nd hiker then takes 9 hours to cover that same distance. This can be expressed as
a = cx = 9d
cx = 9d
x = 9d/c
The second hiker travels for x hours to cover distance b, and the 1st hiker then takes 4 hours to cover than same distance. Expressed as
b = dx = 4c
dx = 4c
x = 4c/d
We now have two expressions for x, set them equal to each other.
9d/c = 4c/d
Multiply both sides by d
9d^2/c = 4c
Divide both sides by c
9d^2/c^2 = 4
Interesting... Both sides are exact squares. Take the square root of both sides
3d/c = 2
d/c = 2/3
We now know the ratio of the speeds of the two hikers. Let's see what X is now.
x = 9d/c = 9*2/3 = 18/3 = 6
x = 4c/d = 4*3/2 = 12/2 = 6
Both expressions for x, claim x to be 6 hours. And 6 hours prior to noon is 6am.
We don't know the actual speeds of the two hikers, nor how far they actually walked. But we do know their relative speeds. And that's enough to figure out when dawn was.</span>
First we distribute

into

and

.


That makes the left side of the equation

Now we subtract

from

, which makes

Now the equation is

Our goal is to isolate

, so we both sides by 30
That will make the equation

We multiply -1 on both sides of the equation:

Finally we simplify

, which makes
So the answer is