Answer:
I think its linear so I dont know 100% but I think it's a sorry if I'm wrong
Answer:
Step-by-step explanation:
First confirm that x = 1 is one of the zeros.
f(1) = 2(1)^3 - 14(1)^2 + 38(1) - 26
f(1) = 2 - 14 + 38 - 26
f(1) = -12 + 38 = + 26
f(1) = 26 - 26
f(1) = 0
=========================
next perform a long division
x -1 || 2x^3 - 14x^2 + 38x - 26 || 2x^2 - 12x + 26
2x^3 - 2x^2
===========
-12x^2 + 28x
-12x^2 +12x
==========
26x -26
26x - 26
========
0
Now you can factor 2x^2 - 12x + 26
2(x^2 - 6x + 13)
The discriminate of the quadratic is negative. (36 - 4*1*13) = - 16
So you are going to get a complex result.
x = -(-6) +/- sqrt(-16)
=============
2
x = 3 +/- 2i
f(x) = 2*(x - 1)*(x - 3 + 2i)*(x - 3 - 2i)
The zeros are
1
3 +/- 2i
Answer: X=40
Step-by-step explanation:
Given:
The algebra tiles of an equation.
To find:
The equation represented by the given model.
Solution:
On the left side of the model we have 4 tiles of (-x) and 3 tiles of (-1). So,
On the right side of the model we have 8 tiles of (-1). So,
Now, equate the LHS and RHS to get the equation.
Therefore, the equation for the given model is .