Answer:
Keq = 0.053
7.3 kJ/mol
Explanation:
Let's consider the following isomerization reaction.
glucose 6‑phosphate ⇄ glucose 1 - phosphate
The concentrations at equilibrium are:
[G6P] = 0.19 M
[G1P] = 0.01 M
The concentration equilibrium constant (Keq) is:
Keq = [G1P] / [G6P]
Keq = 0.01 / 0.19
Keq = 0.053
We can find the standard free energy change, ΔG°, of the reaction mixture using the following expression.
ΔG° = -R × T × lnKeq
ΔG° = -8.314 J/mol.K × 298 K × ln0.053
ΔG° = 7.3 × 10³ J/mol = 7.3 kJ/mol
Answer: 3.5 moles
Explanation:
Based on Avogadro's law:
1 mole of any substance has 6.02 x 10^23 molecules
So, 1 mole of SiO4 = 6.02 x 10^23 molecules
Zmoles of SiO4 = 2.1 x 10^{24} molecules
To get the value of Z, cross multiply:
(2.1 x 10^{24} molecules x 1mole) = (6.02 x 10^23 molecules x Z moles)
2.1 x 10^{24} molecules = (6.02 x 10^23 x Z)
Z = (2.1 x 10^{24}) ➗ (6.02 x 10^23)
Z = 3.5 moles
Thus, there are 3.5 moles of SiO4.
Light energy is turned into chemical energy when <span>when a photochemically excited special chlorophyll molecule of the photosynthetic reaction center loses an electron, undergoing an oxidation reaction.
</span>
Answer:
424 mol
Explanation:
Step 1: Given data
Number of atoms of Neon: 2.55 × 10²⁶ atoms
Step 2: Calculate the number of moles corresponding to 2.55 × 10²⁶ atoms of Neon
In order to convert atoms into moles, we need a conversion factor, which is Avogadro's number: there are 6.02 × 10²³ atoms of Neon in 1 mole of atoms of Neon.
2.55 × 10²⁶ atoms × (1 mol/6.02 × 10²³ atoms) = 424 mol
It would be called the crest.
Happy to help! Have a great evening.
~Brooke❤️