Answer is: <span>D)194 kJ/mol, exothermic
</span>ΔHreaction = ∑(product bond energies) - ∑(reactant bond energies).
∑(product bond energies) = ΔHreaction + ∑(reactant bond energies).
ΔHreaction must be negative (exothermic) if ∑(product bond energies) is positive.
∑(product bond energies) = -1352 kJ/mol + <span>1546 kJ/mol.
</span>∑(product bond energies) = 194 kJ/mol.
∑ is summation.
Given molecule:
CH3-CH2-CH2-CH2-CH2-CH2-CH3
- The molecule contain only C and H atoms, hence it is a hydrocarbon
- The C atoms in the linear chain are linked together by carbon-carbon single bonds, hence it is a saturated compound
- It has 7 C atoms and 16 H atoms, hence the molecular formula is C7H16
-The molecular formula can be generally represented as CnH2n+2 where n = 7. This corresponds to the general molecular formula for alkanes
The given molecule is best described as an <u>alkane</u>
Answer: A) 3.21 g
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side.

We are given:
Mass of iron = 5.58 g
Mass of iron sulphide = 8.79 g
Mass of sulphur = x g
Total mass on reactant side = 5.58 + x
Total mass on product side = 8.79 g
Applying law of conservation of mass, we get:
Hence, the mass of reacting sulfur is 3.21 g.
<u>Answer:</u> The final equation has hydroxide ions which indicate that the reaction has occurred in a basic medium.
<u>Explanation:</u>
Redox reaction is defined as the reaction in which oxidation and reduction take place simultaneously.
The oxidation reaction is defined as the reaction in which a chemical species loses electrons in a chemical reaction. It occurs when the oxidation number of a species increases.
A reduction reaction is defined as the reaction in which a chemical species gains electrons in a chemical reaction. It occurs when the oxidation number of a species decreases.
The given redox reaction follows:

To balance the given redox reaction in basic medium, there are few steps to be followed:
- Writing the given oxidation and reduction half-reactions for the given equation with the correct number of electrons
Oxidation half-reaction: 
Reduction half-reaction: 
- Multiply each half-reaction by the correct number in order to balance charges for the two half-reactions
Oxidation half-reaction:
( × 3)
Reduction half-reaction:
( × 2)
The half-reactions now become:
Oxidation half-reaction: 
Reduction half-reaction: 
- Add the equations and simplify to get a balanced equation
Overall redox reaction: 
As we can see that in the overall redox reaction, hydroxide ions are released in the solution. Thus, making it a basic solution
The law of conservation has been stated that the mass and energy has neither be created nor destroyed in a chemical reaction.
The law of conservation has been evident when there has been an equal number of atoms of each element in the chemical reaction.
<h3>Conservation law</h3><h3 />
The given equation has been assessed as follows:
The reactant has absence of hydrogen, while hydrogen has been present in the product. Thus, the reaction will not follow the law of conservation.
The number of atoms of each reactant has been different on the product and the reactant side. Thus, the reaction will not follow the law of conservation.
The reactant has the presence of carbon, while it has been absent in the reactant. Thus, the reaction will not follow the law of conservation.
The product has the presence of hydrogen, while it has been absent in the reactant. Thus, the reaction will not follow the law of conservation.
Learn more about conservation law, here:
brainly.com/question/2175724