Answer:
2 moles
Explanation:
Let us first start by calculating the molecular mass of Al₂O₃.
The mass of a mole of any compound is called it's molar mass. 1 molar mass 6.02 X 10²³, or Avogadro's number, of compound entities.
Say, 1 mole of Al₂O₃ has 6.02 X 10²³ of Al₂O₃ molecules/atoms. It also has 2*6.02 X 10²³ number of Al atoms and 3*6.02 X 10²³ number of O atoms.
Molecular mass of Al : 26.981539 u
Molecular mass of O: 15.999 u
Therefore, molecular mass of Al₂O₃ is:
=
u
= 101.960078 u
This can be approximated to 102 u.
1mole weighs 102 u
So, 2moles will weigh 2*102 = 204 u
Answer:- 14.9 M
Solution:- Given commercial sample of ammonia is 28% by mass. Let's say we have 100 grams of the sample. Then mass of ammonia would be 28 grams.
Density of the solution is given as 0.90 grams per mL.
From the mass and density we could calculate the volume of the solution as:

= 111 mL
Let's convert the volume from mL to L as molarity is moles of solute per liter of solution.
= 0.111 L
Now, we convert grams of ammonia to moles on dividing the grams by molar mass. Molar mass of ammonia is 17 gram per mole.

= 1.65 mole
To calculate the molarity we divide the moles of ammonia by the liters of solution:

= 14.9 M
So, the molarity of the given commercial sample of ammonia is 14.9 M.
Answer:
Imo : Gas particles are in constant, random motion. The volume of gas particles is negligible in comparison to the volume of the container. There are no attractive forces between gas particles.
No of mole = reacting mass/ molar mass
No of mole = 0.06/56
No of mole = 0.00107mol....
Or...
1mole of iron contain 56gmol¯¹
:-x mole is contained in 0.06g
Porata
And you'll have..
x = 0.06/56
x = 0.00107mol.....
Answer:
Everything in Earth's system can be placed into one of four major subsystems: land, water, living things, or air. These four subsystems are called "spheres." Specifically, they are the "lithosphere" (land), "hydrosphere" (water), "biosphere" (living things), and "atmosphere" (air).
Explanation: