Answer:
m = 8
Explanation:
A telescope is a device that allows us to see objects that were very far from us, it is built by the combination of two lenses, the one with the lowest focal length near the eye and that is the one or the one with the greatest focal length, the most eye-flounder . The magnification of the telescope is
m = - f₀ /
Where f₀ is the focal length of the lens and f_{e} is the false distance of the eyepiece.
It is this problem that gives us the diopter of each lens, these are related to the focal length in meters
D = 1 / f
Let's find the focal length
f₁ = 1 / D₁
f₁ = 1 / 1.16
f₁ = 0.862 m
f₂ = 1 / 9.37
f₂ = 0.1067 m
Therefore, the lens with f₂ is the eyepiece and the slow one with the
distance focal f₁ is the objective.
Let's calculate
m = - f₂ / f₁
m = - 0.862 / 0.1067
m = 8
Answer:
The speed of the 8-ball is 2.125 m/s after the collision.
Explanation:
<u>Law Of Conservation Of Linear Momentum</u>
The total momentum of a system of masses is conserved unless an external force is applied. The momentum of a body with mass m and velocity v is calculated as follows:
P=mv
If we have a system of masses, then the total momentum is the sum of all the individual momentums:
When a collision occurs, the velocities change to v' and the final momentum is:
In a system of two masses, the law of conservation of linear momentum is simplified to:
The m1=0.16 Kg 8-ball is initially at rest v1=0. It is hit by an m2=0.17 Kg cue ball that was moving at v2=2 m/s.
After the collision, the cue ball comes to rest v2'=0. It's required to find the final speed v1' after the collision.
The above equation is solved for v1':
The speed of the 8-ball is 2.125 m/s after the collision.
Explanation:
They were formed by accretion
] Ceres is composed of rock and ice and is estimated to comprise approximately one third of the mass of the entire asteroid belt. Ceres is the only object in the asteroid belt known to be rounded by its own gravity (though detailed analysis was required to exclude 4 Vesta). From Earth, the apparent magnitude of Ceres ranges from 6.7 to 9.3, peaking once every 15 to 16 months,[21]hence even at its brightest it is too dim to be seen with the naked eye except under extremely dark skies.
Mass= density x volume
1.3 kg/m^3 x ( 2.5x4x10) m^3
= 130 kg