Hello!
The answer is C. Hibernate during the cold winter months.
Why?
Alpine marmots are known for having a long hibernation duration which starts in October (winther) and ends in April (summer) (about 7 months). During this long period, they are able to reduce their bear beats from 200 per minute to just 30 or 38 beats, and their breaths from 60 breaths/minute to 1-3 breaths/minute, guaranteeing an extreme energy saving process.
Have a nice day!
Answer:
Stoichiometric Coefficients
The balanced equation makes it possible to convert information about one reactant or product to quantitative data about another element. Understanding this is essential to solving stoichiometric problems
Explanation:
Answer:
The answer to your question is: i have to answer correct first number three and second number one.
Explanation:
1.-regulate cell processes
: Nucleic acids are located inside the nucleus and the nucleus is the brain of the cell, it says what functions must be done, then I think this option is correct.
2.- provide structure
: Nucleic acids are large molecules but very weak, the couldn't be able to give structure. This option is wrong.
3.- transmit genetic information
: The main function of nucleic acids is transmit genetic information, so this option is correct.
4.- fight disease: Nucleic acids are useful to transmit genetic information, and saying the functions a cell must do but fight against diseases is not one of their functions.
Answer is: mass of the ore is 8.54kg.<span>
</span>ω(Ca₃(PO₄)₂ - calcium phosphate) = 58.6% ÷ 100% = 0.586.
m(P) = 1.00 kg · 1000 g/kg.
m(P) = 1000 g.
In one molecule of calcium phosphate there are two phosphorus atoms:
M(Ca₃(PO₄)₂) = 310.18 g/mol.
M(P) = 30.97 g/mol.
For one kilogram of phosphorus, we need:
M(Ca₃(PO₄)₂) : 2M(P) = m(Ca₃(PO₄)₂) : m(P).
310.18 g/mol : 61.94 g/mol = m(Ca₃(PO₄)₂) : 1000 g.
m(Ca₃(PO₄)₂) = 5007.75 g ÷ 1000 g/kg = 5.007 kg.
Mass of ore find from proportion:
m(Ca₃(PO₄)₂) : m(ore) = 56% : 100%.
m(ore) = 100% · 5.007 kg ÷ 58.6%.
m(ore) = 8.54kg.
Answer: The given statement is true.
Explanation:
Entropy means the measure of randomness present in a substance. That is, an increase in temperature will lead cause more motion in the particles of a substance more will be their kinetic energy.
As a result, there will occur more collisions due to which randomness of molecules will increase. Hence, there will be increase in entropy.
So, when we decrease the temperature then there will be decrease in motion of particles. As a result, lesser number of collisions will take place between them. Hence, degree of randomness will also decrease.
Thus, we can conclude the statement entropy of a system decreases with decrease in temperature, is true.