In order to calculate the mass of nitrogen, we must first calculate the mass percentage of nitrogen in potassium nitrate. This is:
% nitrogen = mass of nitrogen / mass of potassium nitrate
% nitrogen = 14 / 101.1 x 100
The mass of nitrogen = % nitrogen x sample mass
= (14 / 101.1) x 101.1
= 14 grams
The molar weight of nitrogen is 14. Each mole of urea contains two moles of nitrogen. Therefore, for there to be 14 grams of nitrogen, there must be 0.5 moles of urea.
Mass of urea = moles urea x molecular weight urea
Mass of urea = 0.5 x 66.06
Mass of urea = 33.03 grams
Answer: 4
Explanation:
Principle Quantum Numbers: This quantum number describes the size of the orbital. It is represented by n.
Azimuthal Quantum Number: This quantum number describes the shape of the orbital. It is represented as 'l'. The value of l ranges from 0 to (n-1). For l = 0,1,2,3... the orbitals are s, p, d, f...
Magnetic Quantum Number: This quantum number describes the orientation of the orbitals. It is represented as
. The value of this quantum number ranges from
. When l = 2, the value of
will be -2, -1, 0, +1, +2.
Given : a f subshell, thus l = 3 , Thus the subshells present would be 3, 2, 1, 0 and thus n will have a value of 4.
Also electrons give are 32.
The formula for number of electrons is
.


Thus principal quantum no will be n= 4.
Answer:
Here's your Answer
Explanation:
the mass spectrum is the graphical representation of the ion abundance versus the mass to charge of the ions separated in mass spectrometer
C. Ca and Br because they're metals and nonmetals
Answer:
- 602 mg of CO₂ and 94.8 mg of H₂O
Explanation:
The<em> yield</em> is measured by the amount of each product produced by the reaction.
The chemical formula of <em>fluorene</em> is C₁₃H₁₀, and its molar mass is 166.223 g/mol.
The <em>oxidation</em>, also know as combustion, of this hydrocarbon is represented by the following balanced chemical equation:

To calculate the yield follow these steps:
<u>1. Mole ratio</u>

<u />
<u>2. Convert 175mg of fluorene to number of moles</u>
- Number of moles = mass in grams / molar mass
<u>3. Set a proportion for each product of the reaction</u>
a) <u>For CO₂</u>
i) number of moles


ii) mass in grams
The molar mass of CO₂ is 44.01g/mol
- mass = number of moles × molar mass
- mass = 0.013686 moles × 44.01 g/mol = 0.602 g = 602mg
b) <u>For H₂O</u>
i) number of moles

ii) mass in grams
The molar mass of H₂O is 18.015g/mol
- mass = number of moles × molar mass
- mass = 0.00526 moles × 18.015 g/mol = 0.0948mg = 94.8 mg