Answer:
more reliable. The more results the better results you get.
Explanation:
(C) 0.1 mole of NaCl dissolved in 1,000. mL of water
<u>Explanation:</u>
The conductivity of 0.1 mole of NaCl dissolved in 1000 mL of water will be greatest as the number of ions in 0.1 mole of NaCl will be more than 0.001, 0.05 and 0.005 moles of NaCl. Greater the number of ions in the solution, greater will be the conductivity. Specific Conductivity decreases with a decrease in concentration. Since the number of ions per unit volume that carry current in a solution decrease on dilution. Hence, concentration and conductivity are directly proportional to each other.
Answer:
A
Explanation:
since Mg has a charge of +2 and ClO3 has a charge of 1-, you need 2 ClO3 to cancel out the +2 since 2 ClO3 ions would have a 2- charge
24.6 ℃
<h3>Explanation</h3>
Hydrochloric acid and sodium hydroxide reacts by the following equation:

which is equivalent to

The question states that the second equation has an enthalpy, or "heat", of neutralization of
. Thus the combination of every mole of hydrogen ions and hydroxide ions in solution would produce
or
of energy.
500 milliliter of a 0.50 mol per liter "M" solution contains 0.25 moles of the solute. There are thus 0.25 moles of hydrogen ions and hydroxide ions in the two 0.500 milliliter solutions, respectively. They would combine to release
of energy.
Both the solution and the calorimeter absorb energy released in this neutralization reaction. Their temperature change is dependent on the heat capacity <em>C</em> of the two objects, combined.
The question has given the heat capacity of the calorimeter directly.
The heat capacity (the one without mass in the unit) of water is to be calculated from its mass and <em>specific</em> heat.
The calorimeter contains 1.00 liters or
of the 1.0 gram per milliliter solution. Accordingly, it would have a mass of
.
The solution has a specific heat of
. The solution thus have a heat capacity of
. Note that one degree Kelvins K is equivalent to one degree celsius ℃ in temperature change measurements.
The calorimeter-solution system thus has a heat capacity of
, meaning that its temperature would rise by 1 degree celsius on the absorption of 4.634 × 10³ joules of energy.
are available from the reaction. Thus, the temperature of the system shall have risen by 3.03 degrees celsius to 24.6 degrees celsius by the end of the reaction.
Answer:
4.214 × 10^23 molecules.
Explanation:
Number of molecules in a substance can be calculated by multiplying the number of moles in that substance by Avagadro's number, which is 6.02 × 10^23.
That is, no. of molecule = n × Avagadro constant
In this case, there are 0.7 moles of fructose. Hence;
number of molecules = 0.7 × 6.02 × 10^23
no. of molecule = 4.214 × 10^23 molecules.