Answer:
From the given choices, the healthy snack that can provide protein after physical activity is the third option, yogurt. Yogurts are derived from fermentation of raw materials by the healthy bacteria, usually of lactobacillus origin. Other items in the choices are not able to provide protein.
Explanation:
Answer:
The period of motion of new mass T = 0.637 sec
Explanation:
Given data
Mass of object (m) = 9 gm = 0.009 kg
Δx = 3.5 cm = 0.035 m
We know that spring force is given by
F = m g
F = 0.009 × 9.81 = 0.08829 N
Spring constant


k = 2.522 
New mass
= 26 gm = 0.026 kg
Now the period of motion is given by


T = 0.637 sec
This is the period of motion of new mass.
Answer:
Explanation:
1) Hypermetropia (better known as Farsighted- this is why nearby objects seem blurry for him)
2) In such instances, image are typically formed farther from the near point
3) Such defects are quite common so there are common procedures such as using convex lens which can restore the sight to normal.
The Ideal Gas Law makes a few assumptions from the Kinetic-Molecular Theory. These assumptions make our work much easier but aren't true under all conditions. The assumptions are,
1) Particles of a gas have virtually no volume and are like single points.
2) Particles exhibit no attractions or repulsions between them.
3) Particles are in continuous, random motion.
4) Collisions between particles are elastic, meaning basically that when they collide, they don't lose any energy.
5) The average kinetic energy is the same for all gasses at a given temperature, regardless of the identity of the gas.
It's generally true that gasses are mostly empty space and their particles occupy very little volume. Gasses are usually far enough apart that they exhibit very little attractive or repulsive forces. When energetic, the gas particles are also in fairly continuous motion, and without other forces, the motion is basically random. Collisions absorb very little energy, and the average KE is pretty close.
Most of these assumptions are dependent on having gas particles very spread apart. When is that true? Think about the other gas laws to remember what properties are related to volume.
A gas with a low pressure and a high temperature will be spread out and therefore exhibit ideal properties.
So, in analyzing the four choices given, we look for low P and high T.
A is at absolute zero, which is pretty much impossible, and definitely does not describe a gas. We rule this out immediately.
B and D are at the same temperature (273 K, or 0 °C), but C is at 100 K, or -173 K. This is very cold, so we rule that out.
We move on to comparing the pressures of B and D. Remember, a low pressure means the particles are more spread out. B has P = 1 Pa, but D has 100 kPa. We need the same units to confirm. Based on our metric prefixes, we know that kPa is kilopascals, and is thus 1000 pascals. So, the pressure of D is five orders of magnitude greater! Thus, the answer is B.
Answer:
beneath the surface of the Pacific Ocean comes from samples and video collected by an unmanned lander