Answer: the wall contracts the force exerted by his head. The wall produces the opposite force which is equal to the force his head bangs the wall with.
Explanation: if his head exerts a much greater force than the wall can counteract the wall will be destroyed, if the wall exerts a much greater force than his head exerts he will be pushed far back and might even suffer a broken head.
The wall in this case provides the opposite reactive force.
The value of spring constant and the oscillator's damping constant is
K= 6605.667008, b= 0.002884387
Explanation:
For Weakly damping spring oscillator
K/m = W_0^2 (at resonance)
K= mW_0^2
=0.206 * ( 2π * 28.5) ^2
=0.206 * (2π)^2 * (28.5)^2
K= 6605.667008
F = - bV
b= -F/V = -F/ -W_0 * m
=F/W_0 * m
= 0.438N / 2π * 28.5 * 0.848
b= 0.002884387
Answer:
9.96 m/s
Explanation:
mass of car, m = 487 kg
radius of track, R = 53.3 m
coefficient of static friction, μ = 0.19
acceleration due to gravity, g = 9.8 m/s^2
let v be the maximum speed so that the car can go without flying off the track.
The formula for the maximum speed is given by


vmax = 9.96 m/s