Answer:
1.
Jupiter is the largest planet in the solar system. (Image credit: NASA)
The largest planet in the solar system, the gas giant Jupiter is approximately 318 times as massive as Earth. If the mass of all of the other planets in the solar system were combined into one "super planet," Jupiter would still be two and a half times as large.
2.Rotation of Jupiter
[/caption]
Jupiter has the fastest rotation of all the planets in the Solar System, completing one rotation on its axis every 9.9 hours.
3.Jupiter, the King of the Planets, is a gas giant, which means that it's made mostly of gases like hydrogen and helium, and that it doesn't have a solid surface in the way that rocky planets like Earth do. With a temperature of 130 K (-140 C, -230 F), it's so cold that it gives off most of its energy in the infrared. In fact, Jupiter gives off almost twice as much heat as it receives from the Sun. It's able to do this because it has its own internal heat source, powered by the slow gravitational collapse that started when the planet first formed. Astronomers estimate that Jupiter is currently shrinking by almost 2 cm per year
Answer:
A dependent variable is a variable that is tested in an experiment. An independent variable is that can be modified. Depending on what you are testing, the dependent variable will change accordingly to the dependent variable.
- I'm reading this back and it doesn't make much sense, if you want me to reword this I can
Answer:
a) 2.85 kW
b) $ 432
c) $ 76.95
Explanation:
Average price of electricity = 1 $/40 MJ
Q = 20 kW
Heat energy production = 20.0 KJ/s
Coefficient of performance, K = 7
also
K=(QH)/Win
Now,
Coefficient of Performance, K = (QH)/Win = (QH)/P(in) = 20/P(in) = 7
where
P(in) is the input power
Thus,
P(in) = 20/7 = 2.85 kW
b) Cost = Energy consumed × charges
Cost = ($1/40000kWh) × (16kW × 300 × 3600s)
cost = $ 432
c) cost = (1$/40000kWh) × (2.85 kW × 200 × 3600s) = $76.95
It would be B since it starts with the solar energy which is converted to electricity with the solar panels, which then creates mechanical energy for the fans blades to move and sound for the radio.
Hope that helps :)