<span>Li2O2 is the formula
</span>
Answer:
See explanation.
Explanation:
1. There are 8 electrons. Elements that end with 2p orbitals are in the 2nd period (aka row) of the periodic table. Elements that have 4 electrons in 2p are in the 16th group (aka column) (column 16 may also be referred to as 6A) of the periodic table. So looking at row 2, column 16, we can see that the first diagram is of O, Oxygen.
2. 8 electrons. This is the same diagram as the one above.
3. 13 electrons. Elements ending with 3p are in period 3. Elements with 1 valence electron in a p orbital are in group 13 (aka group 3A).
4. 7 electrons. We already know 2p is period 2. 3 valence electrons in a p orbital means that it is in group 15/group 5A.
I did not write the answers for #3 and 4 but they can be easily found on a periodic table with the info I gave.
Answer:
See below.
Explanation:
<h3>CoSO4 + Pb(NO3) 2 = Co(NO3) 2 + PbSO4</h3>
Answer:
The pressure of CH3OH and HCl will decrease.
The final partial pressure of HCl is 0.350038 atm
Explanation:
Step 1: Data given
Kp = 4.7 x 10^3 at 400K
Pressure of CH3OH = 0.250 atm
Pressure of HCl = 0.600 atm
Volume = 10.00 L
Step 2: The balanced equation
CH3OH(g) + HCl(g) <=> CH3Cl(g) + H2O(g)
Step 3: The initial pressure
p(CH3OH) = 0.250atm
p(HCl) = 0.600 atm
p(CH3Cl)= 0 atm
p(H2O) = 0 atm
Step 3: Calculate the pressure at the equilibrium
p(CH3OH) = 0.250 - X atm
p(HCl) = 0.600 - X atm
p(CH3Cl)= X atm
p(H2O) = X atm
Step 4: Calculate Kp
Kp = (pHO * pCH3Cl) / (pCH3* pHCl)
4.7 * 10³ = X² /(0.250-X)(0.600-X)
X = 0.249962
p(CH3OH) = 0.250 - 0.249962 = 0.000038 atm
p(HCl) = 0.600 - 0.249962 = 0.350038 atm
p(CH3Cl)= 0.249962 atm
p(H2O) = 0.249962 atm
Kp = (0.249962 * 0.249962) / (0.000038 * 0.350038)
Kp = 4.7 *10³
The pressure of CH3OH and HCl will decrease.
The final partial pressure of HCl is 0.350038 atm
Since no choices are given, I will describe the reactivity of the element chlorine. A halogen is example of
nonmetal. When compounds containing halogens they are
called salts thus the name “salt – former”. Halogen consists of Fluorine,
Chlorine, Bromine, Iodine, Astatine. An example of is reactivity is the monochlorination of
an alkane, which involves substituting one of the hydrogen atom in the alkane and
exchange it with a chlorine atom.
CH₄ + Cl₂ → CH₃Cl + HCl
The H in methane is substituted with the
Cl in chloride.