Answer:
Explanation:
The formula for this is
where F is the gravitational force, G is the gravitational constant, m1 is the mass of one object and m2 is the mass of the other object. We are looking for r, the distance between the centers of their masses.
Filling in:
and moving things around to solve for r:
Doing all that and rounding to the 3 sig fig's you need gives us a distance of 1.55 m
Answer:
Explanation:
Water waves are generally a transverse wave which do not cause permanent displacement of molecules of the medium. Transverse waves are waves in which the direction of propagation of the wave is perpendicular to the direction of vibration of the particles of the medium.
As the wave propagates from one point to another on the surface of water transferring energy, a molecule of water on its surface vibrates upwards and downwards. Its motion is perpendicular to the direction of propagation of the wave. After the vibration, it comes back to its initial position.
Answer:
Wavelength of radio is wave is 3 m
Explanation:
Wavelength of radio is wave is

where

wavelength is

Answer:
B, C, F
Explanation:
B: Sugar can be separated from the water by evaporating the water. This will leave large chunks of sugar.
C: Sugar gets spread out among the water.
F: Sugar water is a homogeneous <u>mixture. </u>Can't see the individual components because of the dissolving.
Hoped this helped! :)
The net force acting on the object perpendicular to the table is
∑ F[perp] = F[normal] - mg = 0
where mg is the weight of the object. Then
F[normal] = mg = (15 kg) (9.8 m/s²) = 147 N
The maximum magnitude of static friction is then
0.40 F[normal] = 58.8 N
which means the applied 40 N force is not enough to make the object start to move. So the object has zero acceleration and does not move.