Mr: 207.2
m=n×Mr= 6.53×207.2= 1353.02g
Answer:
14.68 moles of He
Explanation:
To do this, just remember Avogadro's Constant or Avogadro's number. This constant tells us how many units ( in this case atoms) there are in a mole of ANY type of substance.
Avogadro's constant is 6.022140857 × 10²³ units per mole.
Now that we know how many atoms there are in 1 mole, we can use this as our conversion factor.
8.84 x 10²⁴ atoms of He → moles of He

So the answer would be:
14.68 moles of He
Answer:
We typically represent covalent bonds with a dash ( - ) between the atoms. This indicates a single bond. Ex: Cl - Cl
Single bond, double bond, triple bond.
Explanation:
We call it a single covalent bond because the atoms are sharing a single pair of electrons.
Answer:
Light energy; chemical
Explanation:
The light energy of the Sun is converted into chemical energy by the plants.
Answer: 5.0 moles
Explanation:
From the equation, we see that for every 4 moles of ammonia consumed, 4 moles of nitrogen monoxide are produced (we can reduce this to moles of ammonia consumed = moles of nitrogen monoxide produced).
This means that the answer is <u>5.0 mol</u>