Answer: Angle 59 degree
Explanation: Given that the
n1 = 1.0
n2 = 1.5
Øi = 35 degree
From Snell law, which says that
n1/n2 = sinØ1/ sinØ2
Substitute all the parameters into the formula
1/1.5 = sin 35/sinØ2
Cross multiply
Sin Ø2 = 1.5 sin35
SinØ2 = 1.5 × 0.573 = 0.860
Ø2 = sin^-1(0.860)
Ø2 = 59.36 degree
Ø2 = 59 degree ( approximately)
It has angle 59 degree when passing from air to glass
1)a 2)D 3)a. I think the answers are
Answer: 13.2 seconds.
Explanation: using equation of motion; S= ut +1/2at² where u = initial velocity=0
S= distance travelled
a = acceleration due gravity
t= time.
1 foot = 0.305m so,
S= 2860 feet =872.3m
S= ut+1/2 at²
872.3 = 0×t + 1/2×10 × t²
872.3 =0 + 5t²
T²= 872.3/5
T²= 174.46
Take the square root of T we then have;
t = 13.2 seconds to one decimal place.
Answer:
v = 6.95 m/s
Explanation:
Given that,
A diver is on a board 1.80 m above the water, s = 1.8 m
The initial speed of the diver, u = 3.62 m/s
Let v is the speed with which she hit the water. It will move under the action of gravity. Using the equation of motion as follows :

So, she will hit the water with a speed of 6.95 m/s.
Answer:
F = 1.047 10⁻² N
Explanation:
Let's use kinematics to find the angular acceleration
w = w₀ + α t
as for rest w₀ = 0
w = α t
α = w / t
let's reduce the magnitudes to the SI system
w = 1000 rev / min (2π rad/ 1 rev) (1 min/ 60s) = 104.72 rad / s
m = 1.00 g (1 kg / 1000 g) = 1,000 10⁻³ kg
r = 10.0 cm (1 m / 100 cm) = 0.100 m
let's calculate
α = 104.72 / 1
α = 104.72 rad / s²
angular and linear variables are related
a = α r
a = 104.72 0.100
a = 10.47 m / s²
finally we substitute in Newton's second law
F = 1 10⁻³ 10.47
F = 1.047 10⁻² N