Answer:
just guys
Explanation:
and if not i need how old you are sorry just trying to be safe
The answer would be in the chart or graph A is 1 B is 2
Answer:
1st statement is true
Explanation:
Here statement 1 is correct
Let think about it, if you push down the bar then you are lifting your weight off the pedals.
Obviously, this question does not take into account of racing bikes with straps on pedals, where you would push on one side and pull on the other to match your legs are doing, with straps your other leg can pull pedals upward.
By applying Coulomb's law between the charges, the net force on the charged particle q₁ due to particle q₂ and q₃ is -9.86 N.
<h3>
Distance between q₂ and q₃</h3>
The distance between the second charge and the third charge is given as;
r = 0.3 m
<h3>Force on q₂ due to q₃</h3>

<h3>Net force on particle q₁</h3>
The net force on particle q₁ is determined by summing the individual forces together;
F(net) = F₁ + F₂
F(net) = -14.4 + 4.54
F(net) = -9.86 N
Thus, by applying Coulomb's law between the charges, the net force on the charged particle q₁ due to particle q₂ and q₃ is -9.86 N.
Learn more about Coulomb's law here: brainly.com/question/24743340
Answer:
T=189.15 N
Explanation:
As we know that for downward motion
F acting = F (weight) - Tension T
m a = mg - T
⇒ T = m (g - a)
T = 29.1 kg ( 9.8 m/s² - 3.3 m/s²)
T=189.15 N