When it comes to equilibrium reactions, it useful to do ICE analysis. ICE stands for Initial-Change-Equilibrium. You subtract the initial and change to determine the equilibrium amounts which is the basis for Kc. Kc is the equilibrium constant of concentration which is just the ratio of products to reactant.
Let's do the ICE analysis
2 NH₃ ⇄ N₂ + 3 H₂
I 0 1.3 1.65
C +2x -x -3x
-------------------------------------
E 0.1 ? ?
The variable x is the amount of moles of the substances that reacted. You apply the stoichiometric coefficients by multiplying it by x. Now, we can solve x by:
Equilibrium NH₃ = 0.1 = 0 + 2x
x = 0.05 mol
Therefore,
Equilibrium H₂ = 1.65 - 3(0.05) = 1.5 molEquilibrium N₂ = 1..3 - 0.05 = 1.25 mol
For the second part, I am confused with the given reaction because the stoichiometric coefficients do not balance which violates the law of conservation of mass. But you should remember that the Kc values might differ because of the stoichiometric coefficient. For a reaction: aA + bB ⇄ cC, the Kc for this is
Hence, Kc could vary depending on the stoichiometric coefficients of the reaction.
Answer:
-
419kJ/mol
- 5,0,0,+12
- That catches fire spontaneously
Explanation:
1. Topic: Chemistry
ElementFirst Ionization Energy (kJ/mol) Lithium520Sodium496Rubidium403Cesium376According to the above table, which is most likely to be the first ionization energy for potassium?
2. Topic: Chemistry, Atom
The correct set of four quantum numbers for the valence electrons of the rubidium atom (Z=37) is:
3. Rubidium and cesium are pyrophoric. Here the term pyrophoric means:
- That does not catch fire at all
- That catches fire spontaneously
From the fact that oxygen is in group 16 and carbon is in group 14, the structure of CO2 must be O=C=O. In methane, there is no bond between any of the hydrogen atoms. The structure of H2O2 is H–O–O–H.
Carbon is in group 14 hence it has four valence electrons and oxygen is in group 16 hence it has six valence electrons. This implies that each oxygen atom will share four electrons with carbon in a covalent bond to form the structure O=C=O.
In CH4, we know that carbon is tetravalent so it forms for bonds. Therefore, there is no bond between hydrogen atoms so it bonds with each hydrogen atom; hydrogen only forms one bond.
In H2O2, there is the peroxide ion that has the structure O-O. Hence, the correct structure of H2O2 is H–O–O–H.
Learn more: brainly.com/question/24775418
D is the answer!!!!!!!!!!!!!!!!
Answer:
C
Explanation:
will silver wires conduct electricity better than copper wires ?