Answer:
1.602 moles CO
Explanation:
To convert from liters to moles, divide by 22.4:
35.88 L / 22.4 = 1.602 moles CO
Answer:
0.68 V
Explanation:
For anode;
3Mg(s) ---->3Mg^2+(aq) + 6e
For cathode;
2Al^3+(aq) + 6e -----> 2Al(s)
Overall balanced reaction equation;
3Mg(s) + 2Al^3+(aq) ----> 3Mg^2+(aq) + 2Al(s)
Since
E°anode = -2.356 V
E°cathode = -1.676 V
E°cell=-1.676 -(-2.356)
E°cell= 0.68 V
The grams of NaCl that are required to make 150.0 ml of a 5.000 M solution is 43.875 g
calculation
Step 1:calculate the number of moles
moles = molarity x volume in L
volume = 150 ml / 1000 = 0.15 L
= 0.15 L x 5.000 M = 0.75 moles
Step 2: calculate mass
mass = moles x molar mass
molar mass of NaCl = 23 + 35.5 = 58.5 mol /L
mass is therefore =0.75 moles x 58.5 mol /l =43.875 g
A would be states of matter
B would be density
C would be Liquid
J is oxidation
H would be acid
D would be gas
I would be base
thats all i remember
Answer:
e. UDP-glucose pyrophosphorylase catalyzes the reaction of glucose-I-phosphate and UTP to UDP-glucose and PPi
a. Pyrophosphatase converts PPi and water into two Pi
b. Glycogen synthase adds a glucose unit from UDP-glucose to glycogen, producing a larger glycogen molecule and UDP
Explanation:
Glycogen synthesis or glycogenesis is the process of synthesis of glycogen molecules from glucose molecules in living organisms. Glycogen is a polysaccharide storage form of glucose and helps to store excess glucose in the body form use when required by the body.
The synthesis of glycogen involves sugar nucleotides. Sugar nucleotides are compounds in which a sugar molecule is attached to a nucleotide through phosphate ester bond, resulting in the activation of the sugar molecule. The sugar nucleotides then are used as substrates for the polymerization of the monosaccharide sugars into disaccharides, oligosaccharides and polysaccharides.
In the synthesis of glycogen, glucose-6-phosphate from phosphorylation of free glucose by hexokinase is first isomerized to glucose-1-phosphate by phosphoglucomutase.
Glucose-1-phosphate is then converted to UDP-glucose by its reaction with UTP catalyse by UDP-glucose pyrophosphorylase. The reaction is favoured by the rapid hydrolysis of PPi produced to two molecules of inorganic phosphate by the enzyme pyrophosphatase.
Glycogen synthase then adds a glucose unit from UDP-glucose to a growing chain of glycogen, producing a larger glycogen molecule and free UDP.