Answer:
:)
Explanation:
The nucleus in biology is usually referring to that of
living cells found in organisms in which contains DNA whereas the nucleus in chemistry is usually referring to that of atoms in which contains subatomic particles such as the proton and neutron.
Heterogeneous mixtures are made of different substances that remain physically seperate. An example would be mixing sand and sugar together.
the answer would be soil
The answer is B soil
Answer: The concentrations of
at equilibrium is 0.023 M
Explanation:
Moles of
= 
Volume of solution = 1 L
Initial concentration of
= 
The given balanced equilibrium reaction is,

Initial conc. 0.14 M 0 M 0M
At eqm. conc. (0.14-x) M (x) M (x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[CO]\times [Cl_2]}{[COCl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCO%5D%5Ctimes%20%5BCl_2%5D%7D%7B%5BCOCl_2%5D%7D)
Now put all the given values in this expression, we get :

By solving the term 'x', we get :
x = 0.023 M
Thus, the concentrations of
at equilibrium is 0.023 M
Answer:
58.9g of SO2 is produced
8g of oxygen remains unconsumed
Explanation:
The burning of Carbon disulfide (CS2) in oxygen. gives the reaction:
CS2 (g) + 3O2 (g) → CO2 (g) + 2SO2 (g)
Molar mass of CS2 = 76.139 g/mol
Molar mass of O2 = 15.99 g/mol
Molar mass of SO2 = 64.066 g/mol
Number of moles of CS2 = 35g/ 76.139 g/mol =0.46 moles
Number of moles of O2 = 30g/15.999 g/mol =1.88 moles
From the chemical reaction
1 mole of CS2 react with 3 moles of O2 to give 2 moles of SO2
Thus 0.46 moles of CS2 reacts to form 2× 0.46 = 0.92 moles of SO2
Mass of SO2 produced = 0.92×64.07 = 58.9g of SO2 is produced
thus 0.46 moles of CS2 reacts with 3 × 0.46 moles of O2 which is =1.38 moles of O2
Thus oxygen is the limiting reactant with 1.88 - 1.38 = 0.496~~0.5 mole remaining
Or 8g of oxygen
58.9g of SO2 is produced
oxygen is the limiting
Answer: c. Matter and energy are conserved in chemical reactions.
Explanation:
According to the law of conservation of matter, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side.
For every chemical reaction, the law of conservation of energy is applicable which states that the energy of the system remains conserved. Energy can neither be created nor destroyed. It can be transformed from one form to another.