The newton is the SI unit for force; it is equal to the amount of net force required to accelerate a mass of one kilogram at a rate of one meter per second squared. Newton's second law of motion states: F = ma, multiplying m (kg) by a (m/s 2 ).
I don't understand your question, but I think that would help.
Answer:
Divide the mass of the compound in grams by the molar mass you just calculated. The answer is the number of moles of that mass of compound
Explanation:
Answer:
N₂+3H₂ ⇄2NH₃ is a thermochemical reaction whereas A+BC⇄AB is not.
A+BC⇄AB is a reaction of pure a element with a compound while N₂+3H₂ ⇄2NH₃ is a reaction between two pure elements.
Explanation:
Let A+BC⇄AB be equation i and N₂+3H₂ ⇄2NH₃ be equation ii.
The two reactions differ in that ii is a thermo-chemical reaction whereas i is not. This is because energy is included in reaction ii but not included in reaction i.
Also i is a reaction of pure a element with a compound while ii is a reaction between two pure elements. The compound is BC while the pure element is A.
Hm, this could be more than one option, but gaining electrons makes a negative charge, so
If atoms of a halogen nonmetal (Group 17) gains one electron, the atoms the have "a negative one charge".
The rate constant : k = 9.2 x 10⁻³ s⁻¹
The half life : t1/2 = 75.3 s
<h3>Further explanation</h3>
Given
Reaction 45% complete in 65 s
Required
The rate constant and the half life
Solution
For first order ln[A]=−kt+ln[A]o
45% complete, 55% remains
A = 0.55
Ao = 1
Input the value :
ln A = -kt + ln Ao
ln 0.55 = -k.65 + ln 1
-0.598=-k.65
k = 9.2 x 10⁻³ s⁻¹
The half life :
t1/2 = (ln 2) / k
t1/2 = 0.693 : 9.2 x 10⁻³
t1/2 = 75.3 s