Answer:
21 g/mL
Explanation:
To solve this problem, first look at the density equation, which is D=M/V, which D stands for density, M stands for mass, and V stands for volume. When you substitute in the variables, you get D=17.5/.82, which is equivalent to 21.34. However, since we need to pay attention to the sig fig rules for multiplying, we need to have the same amount of sig figs as the value with the least amount of sig figs, which is the number .82. .82 has two sig figs, so you round down. Your answer will be 21 g/mL.
In order to determine the concentration of ammonium ions in
the solution prepared by mixing solutions of ammonium sulfate, (NH4)2SO4, and ammonium
nitrate, first calculate the amount of ammonium ions for each solution.<span>
<span>For ammonium sulfate sol'n: 0.360 L x 0.250 mol(NH4)2SO4/ L x 2 mol NH4+ /1 mol(NH4)2SO4 =
0.18 mol NH4+
<span>For ammonium nitrate sol'n: 0.675 x 1.2 mol NH4NO3/L x 1 mol NH4+ /1 molNH4NO3
= 0.81 mol NH4+
Thus, the amount of NH4+ ions is (0.18 + 0.81) mol or 0.99
mol NH4+. To get the concentration, multiply this to the volume of solution
which is assumed to be additive, such that:</span></span></span>
M NH4+ in sol’n = 0.99 mol NH4+/1.035 L = 0.9565 mol NH4+/ L
sol’n
Answer:
Argon has 8 valence electrons and no extras, it does not require a bond in order to fill its shells, its satisfied by itself.
Chlorine is missing 1 Electron, if it connects with another Chlorine it will be satisfying both of their needs with a Covalent bond.
Explanation:
Answer:
4.75 moles of Fe
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
FeO + CO —> Fe + CO2
Now, we can determine the number of mole of iron, Fe produced by the reaction of 4.75 mol of FeO with excess CO as follow:
From the balanced equation above,
1 mole of FeO reacted to produce 1 mole of Fe.
Therefore, 4.75 moles of FeO will also react to produce 4.75 moles of Fe.
Therefore, 4.75 moles of Fe is produced.
Answer: The final volume of this solution is 0.204 L.
Explanation:
Given: Molarity of solution = 2.2 M
Moles of solute = 0.45 mol
Molarity is the number of moles of solute present divided by volume in liters.

Substitute the values into above formula as follows.

Thus, we can conclude that the final volume of this solution is 0.204 L.