Answer:
C. crust, mantle, core
Explanation:
density increases as you travel from the crust to the inner core
the crust is on top
next is the mantle
and then the core
Answer:
d = 69 .57 meter
Explanation:
First case
Speed of car ( v ) = 20.5 mi/h = 9.164 M/S
distance ( d ) = 11.6 meter ( m = mass of the car )
Work done = 0.5 m v² = 0.5 * 9.164² * m J = 41.99 m J
Force = ( workdone /distance ) = ( 41.99 m / 11.6 ) = 3.619 m N
Second case
v = 50.2 mi/h = 22.44135 m/s
d = ?
Work done = 0.5 * 22.44² * m J = 251.7768 * m J
Since the braking force remains the same .
3.619 m = ( 251.7768 m / d )
d = 69 .57 meter
It’s solved by using a pretty standard formula for efficiency.
A is the only logical answer
Answer:
U₁ = (ϵAV²)/6d
This means that the new energy of the capacitor is (1/3) of the initial energy before the increased separation.
Explanation:
The energy stored in a capacitor is given by (1/2) (CV²)
Energy in the capacitor initially
U = CV²/2
V = voltage across the plates of the capacitor
C = capacitance of the capacitor
But the capacitance of a capacitor depends on the geometry of the capacitor is given by
C = ϵA/d
ϵ = Absolute permissivity of the dielectric material
A = Cross sectional Area of the capacitor
d = separation between the capacitor
So,
U = CV²/2
Substituting for C
U = ϵAV²/2d
Now, for U₁, the new distance between plates, d₁ = 3d
U₁ = ϵAV²/2d₁
U₁ = ϵAV²/(2(3d))
U₁ = (ϵAV²)/6d
This means that the new energy of the capacitor is (1/3) of the initial energy before the increased separation.